Exact Solutions of Two Nonlinear Partial Differential Equations by Using the First Integral Method
| dc.contributor.author | Soltani, Rahmat | |
| dc.contributor.author | Khalique, Chaudry Masood | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Jafari, Hossein | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.date.accessioned | 2020-05-03T20:54:22Z | |
| dc.date.accessioned | 2025-09-18T14:09:33Z | |
| dc.date.available | 2020-05-03T20:54:22Z | |
| dc.date.available | 2025-09-18T14:09:33Z | |
| dc.date.issued | 2013 | |
| dc.description | Khalique, Chaudry Masood/0000-0002-1986-4859; Jafari, Hossein/0000-0001-6807-6675 | en_US |
| dc.description.abstract | In recent years, many approaches have been utilized for finding the exact solutions of nonlinear partial differential equations. One such method is known as the first integral method and was proposed by Feng. In this paper, we utilize this method and obtain exact solutions of two nonlinear partial differential equations, namely double sine-Gordon and Burgers equations. It is found that the method by Feng is a very efficient method which can be used to obtain exact solutions of a large number of nonlinear partial differential equations. | en_US |
| dc.description.publishedMonth | 5 | |
| dc.identifier.doi | 10.1186/1687-2770-2013-117 | |
| dc.identifier.issn | 1687-2770 | |
| dc.identifier.uri | https://doi.org/10.1186/1687-2770-2013-117 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/13428 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | First Integral Method | en_US |
| dc.subject | Double Sine-Gordon Equation | en_US |
| dc.subject | Burgers Equation | en_US |
| dc.subject | Exact Solutions | en_US |
| dc.title | Exact Solutions of Two Nonlinear Partial Differential Equations by Using the First Integral Method | en_US |
| dc.title | Exact Solutions of Two Nonlinear Partial Differential Equations By Using The First Integral Method | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Khalique, Chaudry Masood/0000-0002-1986-4859 | |
| gdc.author.id | Jafari, Hossein/0000-0001-6807-6675 | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.wosid | Jafari, Hossein/E-9912-2016 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Khalique, Chaudry Masood/E-6743-2011 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Jafari, Hossein; Soltani, Rahmat] Univ Mazandaran, Dept Math, Babol Sar, Iran; [Jafari, Hossein; Khalique, Chaudry Masood] North West Univ, Dept Math Sci, Int Inst Symmetry Anal & Math Modelling, ZA-2735 Mmabatho, South Africa; [Baleanu, Dumitru] Cankaya Univ, Fac Art & Sci, Dept Math & Comp Sci, TR-0630 Ankara, Turkey; [Baleanu, Dumitru] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21589, Saudi Arabia; [Baleanu, Dumitru] Inst Space Sci, Bucharest 76900, Romania | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2116117840 | |
| gdc.identifier.wos | WOS:000325761500001 | |
| gdc.openalex.fwci | 1.22041199 | |
| gdc.openalex.normalizedpercentile | 0.84 | |
| gdc.opencitations.count | 15 | |
| gdc.plumx.crossrefcites | 8 | |
| gdc.plumx.mendeley | 11 | |
| gdc.plumx.scopuscites | 13 | |
| gdc.wos.citedcount | 10 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |