Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Fractional Bloch Equation With Delay

dc.contributor.author Daftardar-Gejji, Varsha
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Magin, Richard
dc.contributor.author Bhalekar, Sachin
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2017-02-17T07:30:44Z
dc.date.accessioned 2025-09-18T15:44:14Z
dc.date.available 2017-02-17T07:30:44Z
dc.date.available 2025-09-18T15:44:14Z
dc.date.issued 2011
dc.description.abstract In this paper we investigate a fractional generalization of the Bloch equation that includes both fractional derivatives and time delays. The appearance of the fractional derivative on the left side of the Bloch equation encodes a degree of system memory in the dynamic model for magnetization. The introduction of a time delay on the right side of the equation balances the equation by also adding a degree of system memory on the right side of the equation. The analysis of this system shows different stability behavior for the T-1 and the T-2 relaxation processes. The T-1 decay is stable for the range of delays tested (1-100 mu s), while the T-2 relaxation in this model exhibited a critical delay (typically 6 mu s) above which the system was unstable. Delays are expected to appear in NMR systems, in both the system model and in the signal excitation and detection processes. Therefore, by including both the fractional derivative and finite time delays in the Bloch equation, we believe that we have established a more complete and more realistic model for NMR resonance and relaxation. (C) 2011 Elsevier Ltd. All rights reserved. en_US
dc.description.publishedMonth 3
dc.description.sponsorship R.L. Magin would like to acknowledge the support of NIH grant R01 EB 007537 from NIBIB. V. Daftardar-Gejji acknowledges University of Pune, India and Department of Science and Technology, N. Delhi, India for the Research Grants. en_US
dc.description.sponsorship NIH, NIBIB [R01 EB 007537]; University of Pune, India; Department of Science and Technology, N. Delhi, India en_US
dc.identifier.citation Bhalekar, S...et al. (2011). Fractional Bloch equation with delay. Computers&Mathematics With Applications, 61(5), 1355-1365. http://dx.doi.org/ 10.1016/j.camwa.2010.12.079 en_US
dc.identifier.doi 10.1016/j.camwa.2010.12.079
dc.identifier.issn 0898-1221
dc.identifier.issn 1873-7668
dc.identifier.scopus 2-s2.0-79951723258
dc.identifier.uri https://doi.org/10.1016/j.camwa.2010.12.079
dc.identifier.uri https://hdl.handle.net/20.500.12416/14209
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fractional Calculus en_US
dc.subject Bloch Equation en_US
dc.subject Delay en_US
dc.title Fractional Bloch Equation With Delay en_US
dc.title Fractional Bloch equation with delay tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 24170858100
gdc.author.scopusid 6602866231
gdc.author.scopusid 7005872966
gdc.author.scopusid 7005342618
gdc.author.wosid Bhalekar, S./D-7628-2011
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Magin, Richard] Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA; [Bhalekar, Sachin; Daftardar-Gejji, Varsha] Univ Pune, Dept Math, Pune 411007, Maharashtra, India; [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, Fac Arts & Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania en_US
gdc.description.endpage 1365 en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 1355 en_US
gdc.description.volume 61 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2085136674
gdc.identifier.wos WOS:000288580700009
gdc.openalex.fwci 17.61038384
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 103
gdc.plumx.crossrefcites 64
gdc.plumx.mendeley 28
gdc.plumx.scopuscites 119
gdc.scopus.citedcount 119
gdc.wos.citedcount 105
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files