Calculation of the frequency shifts and damping constant for the Raman modes (A(1g), B-1) near the tetragonal-cubic transition in SrTiO3
Loading...
Date
2017
Authors
Yurtseven, Hasan Hamit
Journal Title
Journal ISSN
Volume Title
Publisher
Scientific Technical Research Council Turkey-Tubitak
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Raman shifts of the soft mode A(1g) and the B-1 mode are calculated at various pressures at room temperature for the cubic-tetragonal transition (P-c = 9.5 GPa) in SrTiO3. This calculation is performed using the observed volume data through the mode Gruneisen parameters of A(1g) and B-1 which vary with pressure, by fitting to the experimental wavenumbers in this crystalline system. Calculated Raman shifts are then used as order parameters to predict the pressure dependence of the damping constant and the inverse relaxation time for the cubic-tetragonal transition in SrTiO3. Our predictions from the pseudospin-phonon coupling and the energy fluctuation models can be compared with the experimental measurements when available in the literature.
Description
Keywords
Raman Wavenumber, Mode Gruneisen Parameter, Damping Constant, Inverse Relaxation Time, SrTiO3
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Kiraci, Ali; Yurtseven, Hasan Hamit (2017). Calculation of the frequency shifts and damping constant for the Raman modes (A(1g), B-1) near the tetragonal-cubic transition in SrTiO3, Turkish Journal Of Physics, 41(6), 526-535.
WoS Q
Scopus Q
Source
Turkish Journal Of Physics
Volume
41
Issue
6
Start Page
526
End Page
535