Various Optical Solutions To the (1+1)-Telegraph Equation With Space-Time Conformable Derivatives
dc.authorid | Hammouch, Zakia/0000-0001-7349-6922 | |
dc.authorid | Gasmi, Boubekeur/0000-0003-2861-8323 | |
dc.authorwosid | Hammouch, Zakia/D-3532-2011 | |
dc.authorwosid | Jarad, Fahd/T-8333-2018 | |
dc.authorwosid | Gasmi, Boubekeur/Lpq-4517-2024 | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.author | Kessi, Arezki | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.author | Hammouch, Zakia | |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2025-05-09T21:11:54Z | |
dc.date.available | 2025-05-09T21:11:54Z | |
dc.date.issued | 2021 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Gasmi, Boubeker] Higher Sch Management & Digital Econ, Kolea, Algeria; [Kessi, Arezki] Univ Sci & Technol USTHB, Dynam Syst Lab, Bab Ezzouar, Algeria; [Jarad, Fahd] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey; [Hammouch, Zakia] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot, Binh Duong Prov, Vietnam; [Hammouch, Zakia] China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Hammouch, Zakia] Moulay Ismail Univ Meknes, Dept Sci, Ecole Normale Super, Meknes, Morocco | en_US |
dc.description | Hammouch, Zakia/0000-0001-7349-6922; Gasmi, Boubekeur/0000-0003-2861-8323 | en_US |
dc.description.abstract | This paper presents a new sub-equation method based on an auxiliary equation which is implemented via the well-known generalized Kudryashov method, to construct new traveling waves to the Telegraph equation with time and space conformable derivatives. To illustrate its effectiveness, it was tested for seeking traveling wave solutions to the (1+1)-Telegraph equation with space-time conformable derivatives. With the help of Maple Software we derive some new solitary waves solutions. It can be concluded that the proposed method is an accurate tool for solving several kind of nonlinear evolution equations. | en_US |
dc.description.woscitationindex | Emerging Sources Citation Index | |
dc.identifier.doi | 10.22075/ijnaa.2021.5431 | |
dc.identifier.endpage | 780 | en_US |
dc.identifier.issn | 2008-6822 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 767 | en_US |
dc.identifier.uri | https://doi.org/10.22075/ijnaa.2021.5431 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12416/9538 | |
dc.identifier.volume | 12 | en_US |
dc.identifier.wos | WOS:000808257600003 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Semnan Univ | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | (1+1)-Telegraph Equation | en_US |
dc.subject | Generalized Kudryashov Method | en_US |
dc.subject | Conformable Derivative | en_US |
dc.subject | Auxiliary Equation | en_US |
dc.subject | Traveling Wave | en_US |
dc.subject | Optical Solutions | en_US |
dc.title | Various Optical Solutions To the (1+1)-Telegraph Equation With Space-Time Conformable Derivatives | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 8 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | c818455d-5734-4abd-8d29-9383dae37406 | |
relation.isAuthorOfPublication.latestForDiscovery | c818455d-5734-4abd-8d29-9383dae37406 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |