Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Softare Vulnerability Prediction using Extreme Learning Machines Algorithm

dc.contributor.authorKeçeli, Ali Seydi
dc.contributor.authorKaya, Aydın
dc.contributor.authorÇatal, Çağatay
dc.contributor.authorTekinerdoğan, Bedir
dc.contributor.authorID3530tr_TR
dc.date.accessioned2021-06-10T11:33:50Z
dc.date.available2021-06-10T11:33:50Z
dc.date.issued2019
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractSoftware vulnerability prediction aims to detect vulnerabilities in the source code before the software is deployed into the operational environment. The accurate prediction of vulnerabilities helps to allocate more testing resources to the vulnerability-prone modules. From the machine learning perspective, this problem is a binary classification task which classifies software modules into vulnerability-prone and non-vulnerability-prone categories. Several machine learning models have been built for addressing the software vulnerability prediction problem, but the performance of the state-of-the-art models is not yet at an acceptable level. In this study, we aim to improve the performance of software vulnerability prediction models by using Extreme Learning Machines (ELM) algorithms which have not been investigated for this problem. Before we apply ELM algorithms for selected three public datasets, we use data balancing algorithms to balance the data points which belong to two classes. We discuss our initial experimental results and provide the lessons learned. In particular, we observed that ELM algorithms have a high potential to be used for addressing the software vulnerability prediction problem.en_US
dc.identifier.citationKeçeli, Ali Seydi...et al (2019). "Softare Vulnerability Prediction using Extreme Learning Machines Algorithm", İzmir: 23-25 Eylül UYMS 2019.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/4760
dc.language.isoenen_US
dc.relation.ispartofUYMS 2019en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSoftware Vulnurability Predictionen_US
dc.subjectMachine Learningen_US
dc.subjectExtreme Learning Machinesen_US
dc.titleSoftare Vulnerability Prediction using Extreme Learning Machines Algorithmtr_TR
dc.titleSoftare Vulnerability Prediction Using Extreme Learning Machines Algorithmen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Makale.pdf
Size:
968.52 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: