Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Softare Vulnerability Prediction using Extreme Learning Machines Algorithm

dc.contributor.author Keçeli, Ali Seydi
dc.contributor.author Kaya, Aydın
dc.contributor.author Çatal, Çağatay
dc.contributor.author Tekinerdoğan, Bedir
dc.contributor.authorID 3530 tr_TR
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2021-06-10T11:33:50Z
dc.date.available 2021-06-10T11:33:50Z
dc.date.issued 2019
dc.description.abstract Software vulnerability prediction aims to detect vulnerabilities in the source code before the software is deployed into the operational environment. The accurate prediction of vulnerabilities helps to allocate more testing resources to the vulnerability-prone modules. From the machine learning perspective, this problem is a binary classification task which classifies software modules into vulnerability-prone and non-vulnerability-prone categories. Several machine learning models have been built for addressing the software vulnerability prediction problem, but the performance of the state-of-the-art models is not yet at an acceptable level. In this study, we aim to improve the performance of software vulnerability prediction models by using Extreme Learning Machines (ELM) algorithms which have not been investigated for this problem. Before we apply ELM algorithms for selected three public datasets, we use data balancing algorithms to balance the data points which belong to two classes. We discuss our initial experimental results and provide the lessons learned. In particular, we observed that ELM algorithms have a high potential to be used for addressing the software vulnerability prediction problem. en_US
dc.identifier.citation Keçeli, Ali Seydi...et al (2019). "Softare Vulnerability Prediction using Extreme Learning Machines Algorithm", İzmir: 23-25 Eylül UYMS 2019. en_US
dc.identifier.uri https://hdl.handle.net/20.500.12416/4760
dc.language.iso en en_US
dc.relation.ispartof UYMS 2019 en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Software Vulnurability Prediction en_US
dc.subject Machine Learning en_US
dc.subject Extreme Learning Machines en_US
dc.title Softare Vulnerability Prediction using Extreme Learning Machines Algorithm tr_TR
dc.title Softare Vulnerability Prediction Using Extreme Learning Machines Algorithm en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.description.department Çankaya Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Makale.pdf
Size:
968.52 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: