Fractional Diffusion on Bounded Domains
| dc.contributor.author | D'Elia, M. | |
| dc.contributor.author | Du, Q. | |
| dc.contributor.author | Gunzburger, M. | |
| dc.contributor.author | Lehoucq, R. | |
| dc.contributor.author | Defterli, O. | |
| dc.contributor.author | Meerschaert, M.M. | |
| dc.date.accessioned | 2017-04-18T08:51:49Z | |
| dc.date.accessioned | 2025-09-18T15:44:52Z | |
| dc.date.available | 2017-04-18T08:51:49Z | |
| dc.date.available | 2025-09-18T15:44:52Z | |
| dc.date.issued | 2015 | |
| dc.description.abstract | The mathematically correct specification of a fractional differential equation on a bounded domain requires specification of appropriate boundary conditions, or their fractional analogue. This paper discusses the application of nonlocal diffusion theory to specify well-posed fractional diffusion equations on bounded domains. © 2015 Diogenes Co., Sofia. | en_US |
| dc.description.sponsorship | National Science Foundation, NSF, (1344280, 1318586, 1025486) | en_US |
| dc.identifier.citation | Defterli, Ö...et al. (2015). Fractional diffusion on bounded domains. Fractional Calculus And Applied Analysis, 18(2), 242-360. http://dx.doi.org/10.1515/fca-2015-0023 | en_US |
| dc.identifier.doi | 10.1515/fca-2015-0023 | |
| dc.identifier.issn | 1311-0454 | |
| dc.identifier.issn | 1314-2224 | |
| dc.identifier.scopus | 2-s2.0-84990174647 | |
| dc.identifier.uri | https://doi.org/10.1515/fca-2015-0023 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/14438 | |
| dc.language.iso | en | en_US |
| dc.publisher | Walter de Gruyter GmbH | en_US |
| dc.relation.ispartof | Fractional Calculus and Applied Analysis | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Boundary Value Problem | en_US |
| dc.subject | Fractional Diffusion | en_US |
| dc.subject | Nonlocal Diffusion | en_US |
| dc.subject | Well-Posed Equation | en_US |
| dc.title | Fractional Diffusion on Bounded Domains | en_US |
| dc.title | Fractional diffusion on bounded domains | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 8546136600 | |
| gdc.author.scopusid | 36679817000 | |
| gdc.author.scopusid | 7202060129 | |
| gdc.author.scopusid | 7006813815 | |
| gdc.author.scopusid | 7003335602 | |
| gdc.author.scopusid | 7004379590 | |
| gdc.bip.impulseclass | C3 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | Defterli O., Department of Statistics and Probability, Michigan State University, East Lansing, 48824, MI, United States, Department of Mathematics and Computer Science, Çankaya University, Ankara, TR-06790, Turkey; D'Elia M., Optimization and Uncertainty Quantification, Sandia National Laboratories, Albuquerque, 87123, NM, United States; Du Q., Department of Applied Physics and Applied Mathematics, Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, 10027, NY, United States, Department of Mathematics, Pennsylvania State University, University Park, 16802, PA, United States; Gunzburger M., Department of Scientific Computing, Florida State University, Tallahassee, 32309, FL, United States; Lehoucq R., Computational Mathematics, Sandia National Laboratories, Albuquerque, 87123, NM, United States; Meerschaert M.M., Department of Statistics and Probability, Michigan State University, East Lansing, 48824, MI, United States | en_US |
| gdc.description.endpage | 360 | en_US |
| gdc.description.issue | 2 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 342 | en_US |
| gdc.description.volume | 18 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2186626130 | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | BRONZE | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 37.0 | |
| gdc.oaire.influence | 6.3392167E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | well-posed equation | |
| gdc.oaire.keywords | Fractional derivatives and integrals | |
| gdc.oaire.keywords | boundary value problem | |
| gdc.oaire.keywords | fractional diffusion | |
| gdc.oaire.keywords | nonlocal diffusion | |
| gdc.oaire.keywords | Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs | |
| gdc.oaire.keywords | Fractional partial differential equations | |
| gdc.oaire.popularity | 2.14917E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 8.60286788 | |
| gdc.openalex.normalizedpercentile | 0.99 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 78 | |
| gdc.plumx.crossrefcites | 77 | |
| gdc.plumx.mendeley | 14 | |
| gdc.plumx.scopuscites | 87 | |
| gdc.publishedmonth | 4 | |
| gdc.scopus.citedcount | 88 | |
| gdc.virtual.author | Defterli, Özlem | |
| relation.isAuthorOfPublication | 9f00fb1b-e8e0-4303-9d32-1ac0230e2616 | |
| relation.isAuthorOfPublication.latestForDiscovery | 9f00fb1b-e8e0-4303-9d32-1ac0230e2616 | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 0b9123e4-4136-493b-9ffd-be856af2cdb1 |
