Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A Method for Solving Nonlinear Volterra's Population Growth Model of Noninteger Order

dc.contributor.author Agheli, B.
dc.contributor.author Firozja, M. Adabitabar
dc.contributor.author Al Qurashi, M. Mohamed
dc.contributor.author Baleanu, D.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2019-12-05T13:44:59Z
dc.date.accessioned 2025-09-18T15:45:11Z
dc.date.available 2019-12-05T13:44:59Z
dc.date.available 2025-09-18T15:45:11Z
dc.date.issued 2017
dc.description Adabitabar Firozja, M./0000-0001-9177-3882; Agheli, Bahram/0000-0003-2084-4158 en_US
dc.description.abstract Many numerical methods have been developed for nonlinear fractional integro-differential Volterra's population model (FVPG). In these methods, to approximate a function on a particular interval, only a restricted number of points have been employed. In this research, we show that it is possible to use the fuzzy transform method (F-transform) to tackle with FVPG. It makes the F-transform preferable to other methods since it can make full use of all points on this interval. We also make a comparison showing that this method is less computational and is more convenient to be utilized for coping with nonlinear integro-differential equation (IDEs), fractional nonlinear integro-differential equation (FIDEs), and fractional ordinary differential equations (FODEs). en_US
dc.description.publishedMonth 11
dc.identifier.citation Baleanu, D...et al. (2017). A method for solving nonlinear Volterra's population growth model of noninteger order. ADVANCES IN DIFFERENCE EQUATIONS Published: NOV 25 2017 en_US
dc.identifier.doi 10.1186/s13662-017-1421-x
dc.identifier.issn 1687-1847
dc.identifier.scopus 2-s2.0-85036511674
dc.identifier.uri https://doi.org/10.1186/s13662-017-1421-x
dc.identifier.uri https://hdl.handle.net/20.500.12416/14516
dc.language.iso en en_US
dc.publisher Springer international Publishing Ag en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Population Growth en_US
dc.subject Fuzzy Transform en_US
dc.subject Caputo Derivative en_US
dc.subject Integro-Differential Equation en_US
dc.title A Method for Solving Nonlinear Volterra's Population Growth Model of Noninteger Order en_US
dc.title A method for solving nonlinear Volterra's population growth model of noninteger order tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Adabitabar Firozja, M./0000-0001-9177-3882
gdc.author.id Agheli, Bahram/0000-0003-2084-4158
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 7005872966
gdc.author.scopusid 56035567800
gdc.author.scopusid 15839648600
gdc.author.scopusid 57045880100
gdc.author.wosid Firozja, Mohamad/Aan-3782-2021
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Agheli, Bahram/R-3610-2019
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Baleanu, D.] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Maturely Bucharest, Romania; [Agheli, B.; Firozja, M. Adabitabar] Islamic Azad Univ, Qaemshahr Branch, Dept Math, Qaemshahr, Iran; [Al Qurashi, M. Mohamed] King Saud Univ, Dept Math, Riyadh 11495, Saudi Arabia en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2770302480
gdc.identifier.wos WOS:000416277300002
gdc.openalex.fwci 0.66192017
gdc.openalex.normalizedpercentile 0.69
gdc.opencitations.count 5
gdc.plumx.crossrefcites 4
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 8
gdc.scopus.citedcount 7
gdc.wos.citedcount 6
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files