Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Intrusion Detection Using Big Data and Deep Learning Techniques

dc.contributor.authorDoğdu, Erdoğan
dc.contributor.authorDoğdu, Erdoğan
dc.date.accessioned2020-02-28T12:18:23Z
dc.date.available2020-02-28T12:18:23Z
dc.date.issued2019
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractIn this paper, Big Data and Deep Learning Techniques are integrated to improve the performance of intrusion detection systems. Three classifiers are used to classify network traffic datasets, and these are Deep Feed-Forward Neural Network (DNN) and two ensemble techniques, Random Forest and Gradient Boosting Tree (GBT). To select the most relevant attributes from the datasets, we use a homogeneity metric to evaluate features. Two recently published datasets UNSW NB15 and CICIDS2017 are used to evaluate the proposed method. 5-fold cross validation is used in this work to evaluate the machine learning models. We implemented the method using the distributed computing environment Apache Spark, integrated with Keras Deep Learning Library to implement the deep learning technique while the ensemble techniques are implemented using Apache Spark Machine Learning Library. The results show a high accuracy with DNN for binary and multiclass classification on UNSW NB15 dataset with accuracies at 99.16% for binary classification and 97.01% for multiclass classification. While GBT classifier achieved the best accuracy for binary classification with the CICIDS2017 dataset at 99.99%, for multiclass classification DNN has the highest accuracy with 99.56%.en_US
dc.identifier.citationFaker, Osama; Dogdu, Erdogan, "Intrusion Detection Using Big Data and Deep Learning Techniques", Proceedings of the 2019 Annual ACM Southeast Conference (ACMSE 2019), pp. 86-93, (2019).en_US
dc.identifier.doi10.1145/3299815.3314439
dc.identifier.endpage93en_US
dc.identifier.startpage86en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/2564
dc.language.isoenen_US
dc.publisherAssoc Computing Machineryen_US
dc.relation.ispartofProceedings of the 2019 Annual ACM Southeast Conference (ACMSE 2019)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectIntrusion Detection Systemen_US
dc.subjectBig Dataen_US
dc.subjectMachine Learningen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectDeep Learningen_US
dc.subjectEnsemble Techniquesen_US
dc.subjectFeature Selectionen_US
dc.titleIntrusion Detection Using Big Data and Deep Learning Techniquestr_TR
dc.titleIntrusion Detection Using Big Data and Deep Learning Techniquesen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication0d453674-7998-4d57-a06c-03e13bb1e314
relation.isAuthorOfPublication.latestForDiscovery0d453674-7998-4d57-a06c-03e13bb1e314

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: