Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A lie group approach to solve the fractional poisson equation

Loading...
Thumbnail Image

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Editura Acad Romane

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

In the present paper, approximate solutions of fractional Poisson equation (FPE) have been considered using an integrator in the class of Lie groups, namely, the fictitious time integration method (FTIM). Based on the FTIM, the unknown dependent variable u(x, t) is transformed into a new variable with one more dimension. We use a fictitious time tau as the additional dimension (fictitious dimension), by transformation: v(x, t, tau) := (1 + tau)(k) u(x, t), where 0 < k <= 1 is a parameter to control the rate of convergency in the FTIM. Then the group preserving scheme (GPS) is used to integrate the new fractional partial differential equations in the augmented space R2+1. The power and the validity of the method are demonstrated using two examples.

Description

Hashemi, Mir Sajjad/0000-0002-5529-3125

Keywords

Fractional Poisson Equation, Fictitious Time Integration Method, Caputo Derivative, Group-Preserving Scheme

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Hashemi, M.S., Baleanu, D., Parto-Haghighi, M. (2015). A lie group approach to solve the fractional poisson equation. Romanian Journal of Physics, 60(9-10), 1289-1297.

WoS Q

Q3

Scopus Q

Q3

Source

Volume

60

Issue

9-10

Start Page

1289

End Page

1297

URI