Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A lie group approach to solve the fractional poisson equation

dc.authorid Hashemi, Mir Sajjad/0000-0002-5529-3125
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Hashemi, Mir Sajjad/M-4081-2015
dc.contributor.author Hashemi, M. S.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, D.
dc.contributor.author Parto-Haghighi, M.
dc.contributor.other Matematik
dc.date.accessioned 2017-04-20T08:03:14Z
dc.date.available 2017-04-20T08:03:14Z
dc.date.issued 2015
dc.department Çankaya University en_US
dc.department-temp [Hashemi, M. S.; Parto-Haghighi, M.] Univ Bonab, Basic Sci Fac, Dept Math, Bonab 55517, Iran; [Baleanu, D.] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Magurele, Romania en_US
dc.description Hashemi, Mir Sajjad/0000-0002-5529-3125 en_US
dc.description.abstract In the present paper, approximate solutions of fractional Poisson equation (FPE) have been considered using an integrator in the class of Lie groups, namely, the fictitious time integration method (FTIM). Based on the FTIM, the unknown dependent variable u(x, t) is transformed into a new variable with one more dimension. We use a fictitious time tau as the additional dimension (fictitious dimension), by transformation: v(x, t, tau) := (1 + tau)(k) u(x, t), where 0 < k <= 1 is a parameter to control the rate of convergency in the FTIM. Then the group preserving scheme (GPS) is used to integrate the new fractional partial differential equations in the augmented space R2+1. The power and the validity of the method are demonstrated using two examples. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Hashemi, M.S., Baleanu, D., Parto-Haghighi, M. (2015). A lie group approach to solve the fractional poisson equation. Romanian Journal of Physics, 60(9-10), 1289-1297. en_US
dc.identifier.endpage 1297 en_US
dc.identifier.issn 1221-146X
dc.identifier.issue 9-10 en_US
dc.identifier.scopusquality Q3
dc.identifier.startpage 1289 en_US
dc.identifier.volume 60 en_US
dc.identifier.wos WOS:000367360500005
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Editura Acad Romane en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Fractional Poisson Equation en_US
dc.subject Fictitious Time Integration Method en_US
dc.subject Caputo Derivative en_US
dc.subject Group-Preserving Scheme en_US
dc.title A lie group approach to solve the fractional poisson equation tr_TR
dc.title A Lie Group Approach To Solve the Fractional Poisson Equation en_US
dc.type Article en_US
dc.wos.citedbyCount 36
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu, Dumitru.pdf
Size:
480.54 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: