A Note on Sobolev Form Fractional Integro-Differential Equation With State-Dependent Delay Via Resolvent Operators
| dc.contributor.author | Mallika, D. | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Suganya, S. | |
| dc.contributor.author | Baleanu, D. | |
| dc.contributor.author | Arjunan, M.M. | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | Matematik | |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2025-09-23T12:49:47Z | |
| dc.date.available | 2025-09-23T12:49:47Z | |
| dc.date.issued | 2017 | |
| dc.description.abstract | This paper explores the new existence and uniqueness of mild solutions for a class of Sobolev form fractional integro-differential equation (in short SFFIDE) with state-dependent delay (in short SDD) and nonlocal conditions (in short NLCs) via resolvent operators in Banach spaces. By making use of Banach contraction principle and Krasnoselskii fixed point theorem (in short FPT) along with resolvent operators and fractional calculus, we develop the sought outcomes. An illustration is furthermore provided to demonstrate the acquired concepts. © CSP - Cambridge, UK; I & S - Florida, USA, 2017. | en_US |
| dc.identifier.citation | Mallika, D...et al. (2017). "A Note On Sobolev Form Fractional Integro-Differential Equation With State-Dependent Delay Via Resolvent Operators", Nonlinear Studies, Vol. 24, No. 3, pp. 553-573. | en_US |
| dc.identifier.issn | 1359-8678 | |
| dc.identifier.scopus | 2-s2.0-85028511648 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/15432 | |
| dc.language.iso | en | en_US |
| dc.publisher | Cambridge Scientific Publishers | en_US |
| dc.relation.ispartof | Nonlinear Studies | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Fixed Point | en_US |
| dc.subject | Fractional Order Integro-Differential Equations | en_US |
| dc.subject | Resolvent Operator | en_US |
| dc.subject | Semigroup Theory | en_US |
| dc.subject | State-Dependent Delay | en_US |
| dc.title | A Note on Sobolev Form Fractional Integro-Differential Equation With State-Dependent Delay Via Resolvent Operators | en_US |
| dc.title | A Note On Sobolev Form Fractional Integro-Differential Equation With State-Dependent Delay Via Resolvent Operators | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 57193651432 | |
| gdc.author.scopusid | 58126196400 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 23060749300 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | Mallika D., Department of Mathematics, Hindusthan College of Arts and Science, Behind Nava India, Coimbatore, Tamil Nadu, 641 028, India; Suganya S., Department of Mathematics, C. B. M. College, Kovaipudur, Coimbatore, Tamil Nadu, 641 042, India; Baleanu D., Department of Mathematics and Computer Sciences, Faculty of Art and Sciences, Cankaya University, Ankara, 06530, Turkey, Institute of Space Sciences, Magurele-Bucharest, Romania; Arjunan M.M., Department of Mathematics, C. B. M. College, Kovaipudur, Coimbatore, Tamil Nadu, 641 042, India | en_US |
| gdc.description.endpage | 573 | en_US |
| gdc.description.issue | 3 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q4 | |
| gdc.description.startpage | 553 | en_US |
| gdc.description.volume | 24 | en_US |
| gdc.scopus.citedcount | 3 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |