Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Family of Odd Point Non-Stationary Subdivision Schemes and Their Applications

dc.contributor.author Ullah, Zafar
dc.contributor.author Bari, Mehwish
dc.contributor.author Nisar, Kottakkaran Sooppy
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Ghaffar, Abdul
dc.date.accessioned 2020-01-03T12:09:39Z
dc.date.accessioned 2025-09-18T12:05:48Z
dc.date.available 2020-01-03T12:09:39Z
dc.date.available 2025-09-18T12:05:48Z
dc.date.issued 2019
dc.description Ghaffar, Abdul/0000-0002-5994-8440; Nisar, Prof. Kottakkaran Sooppy/0000-0001-5769-4320 en_US
dc.description.abstract The (2s-1)-point non-stationary binary subdivision schemes (SSs) for curve design are introduced for any integer s2. The Lagrange polynomials are used to construct a new family of schemes that can reproduce polynomials of degree (2s-2). The usefulness of the schemes is illustrated in the examples. Moreover, the new schemes are the non-stationary counterparts of the stationary schemes of (Daniel and Shunmugaraj in 3rd International Conference on Geometric Modeling and Imaging, pp.3-8, 2008; Hassan and Dodgson in Curve and Surface Fitting: Sant-Malo 2002, pp.199-208, 2003; Hormann and Sabin in Comput. Aided Geom. Des. 25:41-52, 2008; Mustafa et al. in Lobachevskii J. Math. 30(2):138-145, 2009; Siddiqi and Ahmad in Appl. Math. Lett. 20:707-711, 2007; Siddiqi and Rehan in Appl. Math. Comput. 216:970-982, 2010; Siddiqi and Rehan in Eur. J. Sci. Res. 32(4):553-561, 2009). Furthermore, it is concluded that the basic shapes in terms of limiting curves produced by the proposed schemes with fewer initial control points have less tendency to depart from their tangent as well as their osculating plane compared to the limiting curves produced by existing non-stationary subdivision schemes. en_US
dc.identifier.citation Ghaffar, Abdul...et al. (2019). "Family of odd point non-stationary subdivision schemes and their applications", Advances in Difference Equations. en_US
dc.identifier.doi 10.1186/s13662-019-2105-5
dc.identifier.issn 1687-1847
dc.identifier.scopus 2-s2.0-85065288451
dc.identifier.uri https://doi.org/10.1186/s13662-019-2105-5
dc.identifier.uri https://hdl.handle.net/20.500.12416/10735
dc.language.iso en en_US
dc.publisher Springeropen en_US
dc.relation.ispartof Advances in Difference Equations
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Lagrange Polynomial en_US
dc.subject Non-Stationary en_US
dc.subject Binary Approximating Schemes en_US
dc.subject Convergence en_US
dc.subject Shape Preservation en_US
dc.subject Curvature And Torsion en_US
dc.title Family of Odd Point Non-Stationary Subdivision Schemes and Their Applications en_US
dc.title Family of odd point non-stationary subdivision schemes and their applications tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ghaffar, Abdul/0000-0002-5994-8440
gdc.author.id Nisar, Prof. Kottakkaran Sooppy/0000-0001-5769-4320
gdc.author.scopusid 57220518546
gdc.author.scopusid 54885877300
gdc.author.scopusid 56027343200
gdc.author.scopusid 56715663200
gdc.author.scopusid 7005872966
gdc.author.wosid Ullah, Zafar/J-6112-2019
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Ghaffar, Abdul/Aab-3751-2020
gdc.author.wosid Nisar, Prof. Kottakkaran Sooppy/F-7559-2015
gdc.author.yokid 56389
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Ghaffar, Abdul] BUITEMS, Dept Math Sci, Quetta, Pakistan; [Ullah, Zafar] Univ Educ, Dept Math, Campus DG Khan, Dera Ghazi Khan, Pakistan; [Bari, Mehwish] NCBA&E, Dept Math, Bahawalpur, Pakistan; [Nisar, Kottakkaran Sooppy] Prince Sattam bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawasir, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Cankaya, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.volume 2019
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2947279299
gdc.identifier.wos WOS:000467205000001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 9.0
gdc.oaire.influence 3.1862768E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Planar Graph Embedding
gdc.oaire.keywords History
gdc.oaire.keywords Non-stationary
gdc.oaire.keywords Curvature and torsion
gdc.oaire.keywords Stationary point
gdc.oaire.keywords Limiting
gdc.oaire.keywords Computational Mechanics
gdc.oaire.keywords Computational Geometry
gdc.oaire.keywords Geometry
gdc.oaire.keywords FOS: Mechanical engineering
gdc.oaire.keywords Mathematical analysis
gdc.oaire.keywords Plane curve
gdc.oaire.keywords Engineering
gdc.oaire.keywords QA1-939
gdc.oaire.keywords FOS: Mathematics
gdc.oaire.keywords Analysis of Three-Dimensional Shape Structures
gdc.oaire.keywords Isogeometric Analysis in Computational Engineering
gdc.oaire.keywords Tangent
gdc.oaire.keywords Lagrange polynomial
gdc.oaire.keywords Shape preservation
gdc.oaire.keywords Binary approximating schemes
gdc.oaire.keywords Arithmetic
gdc.oaire.keywords Pure mathematics
gdc.oaire.keywords Mesh Generation Algorithms
gdc.oaire.keywords Discrete mathematics
gdc.oaire.keywords Applied mathematics
gdc.oaire.keywords Computer Graphics and Computer-Aided Design
gdc.oaire.keywords Computer science
gdc.oaire.keywords Mechanical engineering
gdc.oaire.keywords Programming language
gdc.oaire.keywords Archaeology
gdc.oaire.keywords Combinatorics
gdc.oaire.keywords Physical Sciences
gdc.oaire.keywords Computer Science
gdc.oaire.keywords Subdivision
gdc.oaire.keywords Integer (computer science)
gdc.oaire.keywords Convergence
gdc.oaire.keywords Binary number
gdc.oaire.keywords Mathematics
gdc.oaire.keywords binary approximating schemes
gdc.oaire.keywords Numerical aspects of computer graphics, image analysis, and computational geometry
gdc.oaire.keywords shape preservation
gdc.oaire.keywords curvature and torsion
gdc.oaire.keywords Computer-aided design (modeling of curves and surfaces)
gdc.oaire.keywords Numerical interpolation
gdc.oaire.keywords Computer graphics; computational geometry (digital and algorithmic aspects)
gdc.oaire.keywords convergence
gdc.oaire.keywords non-stationary
gdc.oaire.keywords Numerical smoothing, curve fitting
gdc.oaire.popularity 3.4194538E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.openalex.collaboration International
gdc.openalex.fwci 2.58174728
gdc.openalex.normalizedpercentile 0.88
gdc.opencitations.count 10
gdc.plumx.crossrefcites 6
gdc.plumx.mendeley 8
gdc.plumx.scopuscites 13
gdc.publishedmonth 5
gdc.scopus.citedcount 13
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 11
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files