Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Comprehensive Comparison of Various Machine Learning Algorithms for Rf Fingerprints Classification

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers Inc.

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

In these days, the use of drones has become quite common. Remote controls can do the control of these drones with RF signals. It is important to prevent security vulnerabilities caused by using drones in our daily lives. A complex dataset was created by extracting the characteristics of the RF signals and preprocessing them. To solve this complex data set and problem, the application of models including Support Vector Machine (SVM), Random Forest, Decision Tree, Gradient Boosting, XGBoost and Neural Network (NN) models, including various ML models and comparison of optimization studies of these applied models are examined in this article. In addition, a wide range of studies was carried out to compare ML models, including comparison metrics such as Accuracy, Precision, Recall, Mean Squared Error (MSE), F1 Score, $R^{2}$ and Training Time. In line with these results, the highest score was obtained in the $\mathrm{R}^{2}$ comparison metric (97%) in the Neural Network (NN). Compared to the others, the results of Neural Network (NN) were more successful, but the Training Time (245 sec) in the Neural Network (NN) method is by far more than the other ML methods, which shows us that the NN method requires a very high computing process. As a result of the comparison, another outstanding Ensemble-based ML method is Decision Tree. This is because besides the very low Training Time $(5\sec)$, it has managed to be the 2nd ML algorithm with the highest $\mathrm{R}^{2}$ score (96%). Apart from these, among other ML methods, SVM performed slightly less well $(\mathrm{R}^{2}$ 91%) in solving this complex problem. The advanced Gradient Method (95%) and XGBoost (96%), which also have the Ensemble structure, showed a head-to-head performance regarding $\mathrm{R}^{2}$ scores. However, XGBoost (30 sec) has a very short Training Time compared to Gradient Boosting (180 sec). As a result, the approach of each ML method to solving the complex problem differed from each other, and the success rates and Training Time also differed equally. The most important work to be done here is to choose which ML method you want to achieve according to the limited system in hand and the performance-accuracy dilemma. © 2023 IEEE.

Description

Keywords

Machine Learning, Rf Fingerprinting, Signal Processing, Uav Detection And Classification, Unmanned Aerial Vehicles (Uavs)

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Gündoğan, Boran; Ergezer, Halit (2023). Comprehensive Comparison of Various Machine Learning Algorithms for RF Fingerprints Classification. 2023 Innovations in Intelligent Systems and Applications Conference, ASYU 2023, 2023 Innovations in Intelligent Systems and Applications Conference, ASYU 2023, Sivas, 11 October 2023through 13 October 2023.

WoS Q

Scopus Q

OpenCitations Logo
OpenCitations Citation Count
N/A

Source

2023 Innovations in Intelligent Systems and Applications Conference, ASYU 2023 -- 2023 Innovations in Intelligent Systems and Applications Conference, ASYU 2023 -- 11 October 2023 through 13 October 2023 -- Sivas -- 194153

Volume

Issue

Start Page

End Page

PlumX Metrics
Citations

Scopus : 0

Captures

Mendeley Readers : 1

Page Views

2

checked on Nov 24, 2025

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

1

NO POVERTY
NO POVERTY Logo

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

15

LIFE ON LAND
LIFE ON LAND Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo