Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Inference in Multivariate Linear Regression Models With Elliptically Distributed Errors

dc.contributor.author Yazici, Mehmet
dc.contributor.author Islam, M. Qamarul
dc.contributor.author Yildirim, Fetih
dc.contributor.authorID 6772 tr_TR
dc.contributor.authorID 144084 tr_TR
dc.contributor.other 03.03. İktisat
dc.contributor.other 03. İktisadi ve İdari Birimler Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2017-06-22T12:13:54Z
dc.date.accessioned 2025-09-18T15:44:46Z
dc.date.available 2017-06-22T12:13:54Z
dc.date.available 2025-09-18T15:44:46Z
dc.date.issued 2014
dc.description Yazici, Mehmet/0000-0003-2924-9865 en_US
dc.description.abstract In this study we investigate the problem of estimation and testing of hypotheses in multivariate linear regression models when the errors involved are assumed to be non-normally distributed. We consider the class of heavy-tailed distributions for this purpose. Although our method is applicable for any distribution in this class, we take the multivariate t-distribution for illustration. This distribution has applications in many fields of applied research such as Economics, Business, and Finance. For estimation purpose, we use the modified maximum likelihood method in order to get the so-called modified maximum likelihood estimates that are obtained in a closed form. We show that these estimates are substantially more efficient than least-square estimates. They are also found to be robust to reasonable deviations from the assumed distribution and also many data anomalies such as the presence of outliers in the sample, etc. We further provide test statistics for testing the relevant hypothesis regarding the regression coefficients. en_US
dc.description.publishedMonth 8
dc.identifier.citation Islam, M.Q., Yıldırım, F., Yazıcı, M. (2014). Inference in multivariate linear regression models with elliptically distributed errors. Journal of Applied Statistics, 41(8), 1746-1766. http://dx.doi.org/10.1080/02664763.2014.890177 en_US
dc.identifier.doi 10.1080/02664763.2014.890177
dc.identifier.issn 0266-4763
dc.identifier.issn 1360-0532
dc.identifier.scopus 2-s2.0-84899966808
dc.identifier.uri https://doi.org/10.1080/02664763.2014.890177
dc.identifier.uri https://hdl.handle.net/20.500.12416/14389
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Least-Squares Estimates en_US
dc.subject Maximum Likelihood Estimates en_US
dc.subject Modified Maximum Likelihood Estimates en_US
dc.subject Multivariate Distributions en_US
dc.subject Multivariate T-Distribution en_US
dc.subject Robust Estimates en_US
dc.subject 62J05 en_US
dc.subject 62F35 en_US
dc.subject 62H12 en_US
dc.title Inference in Multivariate Linear Regression Models With Elliptically Distributed Errors en_US
dc.title Inference in multivariate linear regression models with elliptically distributed errors tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Yazici, Mehmet/0000-0003-2924-9865
gdc.author.institutional Yazıcı, Mehmet
gdc.author.institutional Islam, M.Qamarul
gdc.author.scopusid 55547120879
gdc.author.scopusid 6602194368
gdc.author.scopusid 35241352200
gdc.author.wosid Yazici, Mehmet/Gwz-2001-2022
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Islam, M. Qamarul; Yazici, Mehmet] Cankaya Univ, Dept Econ, Ankara, Turkey; [Yildirim, Fetih] Cankaya Univ, Dept Ind Engn, Ankara, Turkey en_US
gdc.description.endpage 1766 en_US
gdc.description.issue 8 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 1746 en_US
gdc.description.volume 41 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W2083774599
gdc.identifier.wos WOS:000335854900008
gdc.openalex.fwci 0.32319344
gdc.openalex.normalizedpercentile 0.66
gdc.opencitations.count 4
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.wos.citedcount 4
relation.isAuthorOfPublication 02e2c039-f4df-42e5-ad8c-b569f9d4c9cc
relation.isAuthorOfPublication 5aa299c8-3d70-498f-8e3b-ec8423f212d2
relation.isAuthorOfPublication.latestForDiscovery 02e2c039-f4df-42e5-ad8c-b569f9d4c9cc
relation.isOrgUnitOfPublication d09f65f8-a5a4-46a9-97c8-dd42f4e7c29e
relation.isOrgUnitOfPublication da4f5829-5e26-41bc-9c75-12779175bb39
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery d09f65f8-a5a4-46a9-97c8-dd42f4e7c29e

Files