Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Molecular dynamic approach to predict thermo-mechanical properties of poly(butylene terephthalate)/CaCO3 nanocomposites

dc.contributor.author Seyedzavvar, Mirsadegh
dc.contributor.author Boğa, Cem
dc.contributor.author Akar, Samet
dc.contributor.author Pashmforoush, Farzad
dc.contributor.authorID 315516 tr_TR
dc.date.accessioned 2022-06-20T12:48:50Z
dc.date.available 2022-06-20T12:48:50Z
dc.date.issued 2021
dc.description.abstract Thermo-mechanical properties of poly(butylene terephthalate) polymer reinforced with carbonate calcium nanoparticles have been investigated using molecular dynamics simulations. Detailed analyses have been conducted on the effects of nanofiller content, at concentration levels of 0–7 wt%, on the mechanical properties of PBT, i.e. Young's modulus, Poisson's ratio and shear modulus. Thermal properties, including thermal conductivity and glass transition temperature, have been determined using Perl scripts developed based on nonequilibrium molecular dynamics and a high temperature annealing procedure, respectively. Experiments have been performed to verify the accuracy of the results of MD simulations. The CaCO3/PBT nanocomposites were synthesized using melt blending and mold injection techniques. The uniaxial tensile test, thermal conductivity, differential scanning calorimetry and x-ray diffraction spectroscopy measurements were conducted to quantify the thermo-mechanical properties of such nanocomposites experimentally. The results showed significant improvements in the mechanical properties by addition of CaCO3 nanoparticles due to strong binding between rigid particles and PBT polymer and high nucleation effects of nanoparticles on the matrix. Thermal conductivity and glass transition temperature of nanocomposites represented a consistent increase with the ratio of CaCO3 nanoparticles up to 5 wt% with an enhancement of 38% and 36% with respect to that of pure PBT, respectively. © 2021 Elsevier Ltd en_US
dc.description.publishedMonth 9
dc.identifier.citation Seyedzavvar, Mirsadegh...et al (2021). "Molecular dynamic approach to predict thermo-mechanical properties of poly(butylene terephthalate)/CaCO3 nanocomposites", Materials Today Communications, Vol. 28. en_US
dc.identifier.doi 10.1016/j.mtcomm.2021.102602
dc.identifier.issn 2352-4928
dc.identifier.uri https://hdl.handle.net/20.500.12416/5678
dc.language.iso en en_US
dc.relation.ispartof Materials Today Communications en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Caco3/PBT Nanocomposites en_US
dc.subject Molecular Dynamics Simulation en_US
dc.subject Thermo-Mechanical Properties en_US
dc.title Molecular dynamic approach to predict thermo-mechanical properties of poly(butylene terephthalate)/CaCO3 nanocomposites tr_TR
dc.title Molecular Dynamic Approach To Predict Thermo-Mechanical Properties of Poly(Butylene Terephthalate)/Caco3 Nanocomposites en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Akar, Samet
gdc.description.department Çankaya Üniversitesi, Mühendislik Fakültesi, Makine Mühendisliği Bölümü en_US
gdc.description.volume 28 en_US
gdc.identifier.openalex W3177543059
gdc.openalex.fwci 1.22868867
gdc.openalex.normalizedpercentile 0.74
gdc.opencitations.count 7
gdc.plumx.crossrefcites 7
gdc.plumx.mendeley 13
gdc.plumx.scopuscites 11
relation.isAuthorOfPublication d7306141-fd74-42cb-bf33-18b4eb7fb92e
relation.isAuthorOfPublication.latestForDiscovery d7306141-fd74-42cb-bf33-18b4eb7fb92e
relation.isOrgUnitOfPublication b3982d12-14ba-4f93-ae05-1abca7e3e557
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery b3982d12-14ba-4f93-ae05-1abca7e3e557

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: