Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Molecular dynamic approach to predict thermo-mechanical properties of poly(butylene terephthalate)/CaCO3 nanocomposites

dc.contributor.authorSeyedzavvar, Mirsadegh
dc.contributor.authorBoğa, Cem
dc.contributor.authorAkar, Samet
dc.contributor.authorPashmforoush, Farzad
dc.contributor.authorID315516tr_TR
dc.date.accessioned2022-06-20T12:48:50Z
dc.date.available2022-06-20T12:48:50Z
dc.date.issued2021
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Makine Mühendisliği Bölümüen_US
dc.description.abstractThermo-mechanical properties of poly(butylene terephthalate) polymer reinforced with carbonate calcium nanoparticles have been investigated using molecular dynamics simulations. Detailed analyses have been conducted on the effects of nanofiller content, at concentration levels of 0–7 wt%, on the mechanical properties of PBT, i.e. Young's modulus, Poisson's ratio and shear modulus. Thermal properties, including thermal conductivity and glass transition temperature, have been determined using Perl scripts developed based on nonequilibrium molecular dynamics and a high temperature annealing procedure, respectively. Experiments have been performed to verify the accuracy of the results of MD simulations. The CaCO3/PBT nanocomposites were synthesized using melt blending and mold injection techniques. The uniaxial tensile test, thermal conductivity, differential scanning calorimetry and x-ray diffraction spectroscopy measurements were conducted to quantify the thermo-mechanical properties of such nanocomposites experimentally. The results showed significant improvements in the mechanical properties by addition of CaCO3 nanoparticles due to strong binding between rigid particles and PBT polymer and high nucleation effects of nanoparticles on the matrix. Thermal conductivity and glass transition temperature of nanocomposites represented a consistent increase with the ratio of CaCO3 nanoparticles up to 5 wt% with an enhancement of 38% and 36% with respect to that of pure PBT, respectively. © 2021 Elsevier Ltden_US
dc.description.publishedMonth9
dc.identifier.citationSeyedzavvar, Mirsadegh...et al (2021). "Molecular dynamic approach to predict thermo-mechanical properties of poly(butylene terephthalate)/CaCO3 nanocomposites", Materials Today Communications, Vol. 28.en_US
dc.identifier.doi10.1016/j.mtcomm.2021.102602
dc.identifier.issn2352-4928
dc.identifier.urihttp://hdl.handle.net/20.500.12416/5678
dc.identifier.volume28en_US
dc.language.isoenen_US
dc.relation.ispartofMaterials Today Communicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCaco3/PBT Nanocompositesen_US
dc.subjectMolecular Dynamics Simulationen_US
dc.subjectThermo-Mechanical Propertiesen_US
dc.titleMolecular dynamic approach to predict thermo-mechanical properties of poly(butylene terephthalate)/CaCO3 nanocompositestr_TR
dc.titleMolecular Dynamic Approach To Predict Thermo-Mechanical Properties of Poly(Butylene Terephthalate)/Caco3 Nanocompositesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: