Global Stability of Local Fractional Henon-Lozi Map Using Fixed Point Theory
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Ibrahim, Rabha W. | |
| dc.date.accessioned | 2024-03-28T12:20:33Z | |
| dc.date.accessioned | 2025-09-18T16:08:32Z | |
| dc.date.available | 2024-03-28T12:20:33Z | |
| dc.date.available | 2025-09-18T16:08:32Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | We present an innovative piecewise smooth mapping of the plane as a parametric discrete-time chaotic system that has robust chaos over a share of its significant organization parameters and includes the generalized Henon and Lozi schemes as two excesses and other arrangements as an evolution in between. To obtain the fractal Henon and Lozi system, the generalized Henon and Lozi system is defined by adopting the fractal idea (FHLS). The recommended system's dynamical performances are investigated from many angles, such as global stability in terms of the set of fixed points. | en_US |
| dc.identifier.citation | Ibrahim, Rabha W.; Baleanu, D. (2022). "Global stability of local fractional Hénon-Lozi map using fixed point theory", AIMS Mathematics, Vol. 7, No.6, pp.11399-11416. | en_US |
| dc.identifier.doi | 10.3934/math.2022636 | |
| dc.identifier.issn | 2473-6988 | |
| dc.identifier.scopus | 2-s2.0-85128140880 | |
| dc.identifier.uri | https://doi.org/10.3934/math.2022636 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/15080 | |
| dc.language.iso | en | en_US |
| dc.publisher | Amer inst Mathematical Sciences-aims | en_US |
| dc.relation.ispartof | AIMS Mathematics | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Fractional Calculus | en_US |
| dc.subject | Differential Operator | en_US |
| dc.subject | Fractional Differential Equation | en_US |
| dc.subject | Fractal Chaotic | en_US |
| dc.subject | Fractal | en_US |
| dc.title | Global Stability of Local Fractional Henon-Lozi Map Using Fixed Point Theory | en_US |
| dc.title | Global stability of local fractional Hénon-Lozi map using fixed point theory | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 16319225300 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Ibrahim, Rabha/D-3312-2017 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Ibrahim, Rabha W.] Inst Elect & Elect Engn IEEE 94086547, Kuala Lumpur, Malaysia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele R76900, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40402, Taiwan | en_US |
| gdc.description.endpage | 11416 | en_US |
| gdc.description.issue | 6 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 11399 | en_US |
| gdc.description.volume | 7 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4226296023 | |
| gdc.identifier.wos | WOS:000788243000006 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 7.0 | |
| gdc.oaire.influence | 2.7410774E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | fractal | |
| gdc.oaire.keywords | fractional differential equation | |
| gdc.oaire.keywords | differential operator | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | fractional calculus | |
| gdc.oaire.keywords | fractal chaotic | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.popularity | 7.163767E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 4.10249055 | |
| gdc.openalex.normalizedpercentile | 0.74 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 5 | |
| gdc.plumx.mendeley | 3 | |
| gdc.plumx.scopuscites | 8 | |
| gdc.scopus.citedcount | 8 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 7 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
