Sparsity-driven change detection in multitemporal sar images
dc.contributor.author | Nar, Fatih | |
dc.contributor.author | Özgür, Atilla | |
dc.contributor.author | Saran, Ayşe Nurdan | |
dc.contributor.authorID | 252953 | tr_TR |
dc.contributor.authorID | 20868 | tr_TR |
dc.date.accessioned | 2017-03-07T08:15:52Z | |
dc.date.available | 2017-03-07T08:15:52Z | |
dc.date.issued | 2016 | |
dc.department | Çankaya Üniversitesi, Mühendislik Fakültesi, Elektronik ve Haberleşme Mühendisliği Bölümü | en_US |
dc.description.abstract | In this letter, a method for detecting changes in multitemporal synthetic aperture radar (SAR) images by minimizing a novel cost function is proposed. This cost function is constructed with log-ratio-based data fidelity terms and an l(1)-norm-based total variation (TV) regularization term. Log-ratio terms model the changes between the two SAR images where the TV regularization term imposes smoothness on these changes in a sparse manner such that fine details are extracted while effects like speckle noise are reduced. The proposed method, sparsity-driven change detection (SDCD), employs accurate approximation techniques for the minimization of the cost function since data fidelity terms are not convex and the employed l(1)-norm TV regularization term is not differentiable. The performance of the SDCD is shown on real-world SAR images obtained from various SAR sensors. | en_US |
dc.description.publishedMonth | 7 | |
dc.identifier.citation | Nar, F., Özgür,A., Saran, A.N. (2016). Sparsity-driven change detection in multitemporal sar images. IEEE Geoscience And Remote Sensing Letters, 13(7), 1032-1036. http://dx.doi.org/10.1109/LGRS.2016.2562032 | en_US |
dc.identifier.doi | 10.1109/LGRS.2016.2562032 | |
dc.identifier.endpage | 1036 | en_US |
dc.identifier.issn | 1545-598X | |
dc.identifier.issue | 7 | en_US |
dc.identifier.startpage | 1032 | en_US |
dc.identifier.uri | http://hdl.handle.net/20.500.12416/1393 | |
dc.identifier.volume | 13 | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEE-INST Electrical Electronics Engineers Inc. | en_US |
dc.relation.ispartof | IEEE Geoscience And Remote Sensing Letters | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Change Detection | en_US |
dc.subject | Image Analysis | en_US |
dc.subject | log Ratio | en_US |
dc.subject | Synthetic Aperture Radar (SAR) | en_US |
dc.subject | Total Variation (TV) | en_US |
dc.subject | l(1)-Norm | en_US |
dc.title | Sparsity-driven change detection in multitemporal sar images | tr_TR |
dc.title | Sparsity-driven change detection in multitemporal sar images | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: