Monotonicity Results for Nabla Riemann-Liouville Fractional Differences
No Thumbnail Available
Date
2022
Journal Title
Journal ISSN
Volume Title
Publisher
Mdpi
Open Access Color
GOLD
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
Positivity analysis is used with some basic conditions to analyse monotonicity across all discrete fractional disciplines. This article addresses the monotonicity of the discrete nabla fractional differences of the Riemann-Liouville type by considering the positivity of ((RL)(b0)del(theta)g)(z) combined with a condition on g(b(0)+2), g(b(0)+3) and g(b(0)+4), successively. The article ends with a relationship between the discrete nabla fractional and integer differences of the Riemann-Liouville type, which serves to show the monotonicity of the discrete fractional difference ((RL)(b0)del(theta)g)(z).
Description
Srivastava, Hari M./0000-0002-9277-8092; M. Abualnaja, Khadijah/0000-0002-2908-1807; Mohammed, Pshtiwan/0000-0001-6837-8075; Jan, Rashid/0000-0001-9709-7045
Keywords
Discrete Fractional Calculus, Discrete Nabla Riemann-Liouville Fractional Differences, Monotonicity Analysis, discrete nabla Riemann–Liouville fractional differences, monotonicity analysis, discrete fractional calculus; discrete nabla Riemann–Liouville fractional differences; monotonicity analysis, QA1-939, discrete fractional calculus, Mathematics
Turkish CoHE Thesis Center URL
Fields of Science
0101 mathematics, 01 natural sciences
Citation
WoS Q
Q1
Scopus Q
Q2

OpenCitations Citation Count
2
Source
Mathematics
Volume
10
Issue
14
Start Page
2433
End Page
PlumX Metrics
Citations
CrossRef : 2
Scopus : 4
Google Scholar™

OpenAlex FWCI
0.34868288
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING


