Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Multi-Objective Trajectory Planning for Slung-Load Quadrotor System

dc.contributor.author Ergezer, Halit
dc.contributor.authorID 293396 tr_TR
dc.date.accessioned 2022-06-27T12:04:09Z
dc.date.accessioned 2025-09-18T13:27:19Z
dc.date.available 2022-06-27T12:04:09Z
dc.date.available 2025-09-18T13:27:19Z
dc.date.issued 2021
dc.description.abstract In this article, multi-objective trajectory planning has been carried out for a quadrotor carrying a slung load. The goal is to obtain non-dominated solutions for path length, mission duration, and dissipated energy cost functions. These costs are optimized by imposing constraints on the slung-load quadrotor system's endpoints, borders, obstacles, and dynamical equations. The dynamic model of a slung-load quadrotor system is used in the Euler-Lagrange formulation. Although the differential flatness feature is mostly used in this system's trajectory planning, a fully dynamic model has been used in our study. A new multi-objective Genetic Algorithm has been developed to solve path planning, aiming to optimize trajectory length, mission time, and energy consumed during the mission. The solution process has a three-phase algorithm: Phase-1 is about randomly generating waypoints, Phase-2 is about constructing the initial non-dominated pool, and the final phase, Phase-3, is obtaining the solution. In addition to conventional genetic operators, simple genetic operators are proposed to improve the trajectories locally. Pareto Fronts have been obtained corresponding to exciting scenarios. The method has been tested, and results have been presented at the end. A comparison of the solutions obtained with MOGA operators and MOPSO over hypervolume values is also presented. en_US
dc.identifier.citation Ergezer, Halit (2021). "Multi-Objective Trajectory Planning for Slung-Load Quadrotor System", IEEE Access, Vol. 9, pp. 155003-155017. en_US
dc.identifier.doi 10.1109/ACCESS.2021.3129265
dc.identifier.issn 2169-3536
dc.identifier.scopus 2-s2.0-85120043515
dc.identifier.uri https://doi.org/10.1109/ACCESS.2021.3129265
dc.identifier.uri https://hdl.handle.net/123456789/12896
dc.language.iso en en_US
dc.publisher Ieee-inst Electrical Electronics Engineers inc en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Trajectory en_US
dc.subject Optimization en_US
dc.subject Trajectory Planning en_US
dc.subject Linear Programming en_US
dc.subject Genetic Algorithms en_US
dc.subject Mathematical Models en_US
dc.subject Wires en_US
dc.subject Multiobjective Optimization en_US
dc.subject Slung-Load Quadrotor System en_US
dc.title Multi-Objective Trajectory Planning for Slung-Load Quadrotor System en_US
dc.title Multi-Objective Trajectory Planning for Slung-Load Quadrotor System tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Ergezer, Halit
gdc.author.scopusid 8375807400
gdc.author.wosid Ergezer, Halit/S-6502-2017
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Ergezer, Halit] Cankaya Univ, Mechatron Engn Dept, TR-06790 Ankara, Turkey en_US
gdc.description.endpage 155017 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 155003 en_US
gdc.description.volume 9 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W3215453334
gdc.identifier.wos WOS:000722712600001
gdc.openalex.fwci 0.40887792
gdc.openalex.normalizedpercentile 0.63
gdc.opencitations.count 3
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.wos.citedcount 5
relation.isAuthorOfPublication e7c25403-d5d5-4ca7-b1c0-8e155d9a2310
relation.isAuthorOfPublication.latestForDiscovery e7c25403-d5d5-4ca7-b1c0-8e155d9a2310
relation.isOrgUnitOfPublication 5b0b2c59-0735-4593-b820-ff3847d58827
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 5b0b2c59-0735-4593-b820-ff3847d58827

Files