On a Geometric Study of a Class of Normalized Functions Defined by Bernoulli's Formula
| dc.contributor.author | Aldawish, Ibtisam | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Ibrahim, Rabha W. | |
| dc.date.accessioned | 2022-10-04T12:35:19Z | |
| dc.date.accessioned | 2025-09-18T13:27:24Z | |
| dc.date.available | 2022-10-04T12:35:19Z | |
| dc.date.available | 2025-09-18T13:27:24Z | |
| dc.date.issued | 2021 | |
| dc.description | Aldawish, Ibtisam/0000-0003-0745-3347 | en_US |
| dc.description.abstract | The central purpose of this effort is to investigate analytic and geometric properties of a class of normalized analytic functions in the open unit disk involving Bernoulli's formula. As a consequence, some solutions are indicated by the well-known hypergeometric function. The class of starlike functions is investigated containing the suggested class. | en_US |
| dc.identifier.citation | Ibrahim, Rabha W.; Aldawish, Ibtisam; Baleanu, Dumitru (2021). "On a geometric study of a class of normalized functions defined by Bernoulli’s formula", Advances in Difference Equations, Vol. 2021, No. 1. | en_US |
| dc.identifier.doi | 10.1186/s13662-021-03622-3 | |
| dc.identifier.issn | 1687-1847 | |
| dc.identifier.scopus | 2-s2.0-85117397956 | |
| dc.identifier.uri | https://doi.org/10.1186/s13662-021-03622-3 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/12926 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.ispartof | Advances in Difference Equations | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Univalent Function | en_US |
| dc.subject | Analytic Function | en_US |
| dc.subject | Subordination And Superordination | en_US |
| dc.subject | Open Unit Disk | en_US |
| dc.subject | Difference-Differential Operator | en_US |
| dc.subject | Special Function | en_US |
| dc.title | On a Geometric Study of a Class of Normalized Functions Defined by Bernoulli's Formula | en_US |
| dc.title | On a geometric study of a class of normalized functions defined by Bernoulli’s formula | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Aldawish, Ibtisam/0000-0003-0745-3347 | |
| gdc.author.scopusid | 16319225300 | |
| gdc.author.scopusid | 56103523200 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Ibrahim, Rabha/D-3312-2017 | |
| gdc.author.wosid | Aldawish, Ibtisam/Hkf-0362-2023 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Ibrahim, Rabha W.] IEEE 94086547, Kuala Lumpur 59200, Malaysia; [Aldawish, Ibtisam] IMSIU Imam Mohammad Ibn Saud Islamic Univ, Dept Math & Stat, Coll Sci, Riyadh, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40402, Taiwan | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.volume | 2021 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3205938632 | |
| gdc.identifier.wos | WOS:000708910100005 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.4895952E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Artificial intelligence | |
| gdc.oaire.keywords | Class (philosophy) | |
| gdc.oaire.keywords | Polymers and Plastics | |
| gdc.oaire.keywords | Bernoulli's principle | |
| gdc.oaire.keywords | Materials Science | |
| gdc.oaire.keywords | Analytic Functions | |
| gdc.oaire.keywords | Univalent Functions | |
| gdc.oaire.keywords | Evolutionary biology | |
| gdc.oaire.keywords | Mathematical analysis | |
| gdc.oaire.keywords | Synthesis and Characterization of Polymer Resins | |
| gdc.oaire.keywords | Differential equation | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Hypergeometric function | |
| gdc.oaire.keywords | Geometric Function Theory | |
| gdc.oaire.keywords | Biology | |
| gdc.oaire.keywords | Subordination and superordination | |
| gdc.oaire.keywords | Special function | |
| gdc.oaire.keywords | Geometric function theory | |
| gdc.oaire.keywords | Physics | |
| gdc.oaire.keywords | Geometric Function Theory and Complex Analysis | |
| gdc.oaire.keywords | Pure mathematics | |
| gdc.oaire.keywords | Univalent function | |
| gdc.oaire.keywords | Computer science | |
| gdc.oaire.keywords | Unit disk | |
| gdc.oaire.keywords | Analytic function | |
| gdc.oaire.keywords | Function (biology) | |
| gdc.oaire.keywords | Open unit disk | |
| gdc.oaire.keywords | Difference-differential operator | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Thermodynamics | |
| gdc.oaire.keywords | Geometry and Topology | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Ordinary differential equation | |
| gdc.oaire.keywords | Hypergeometric Functions | |
| gdc.oaire.keywords | Riemann hypothesis | |
| gdc.oaire.keywords | univalent function | |
| gdc.oaire.keywords | special function | |
| gdc.oaire.keywords | analytic function | |
| gdc.oaire.keywords | Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.) | |
| gdc.oaire.keywords | Maximum principle, Schwarz's lemma, Lindelöf principle, analogues and generalizations; subordination | |
| gdc.oaire.keywords | General theory of univalent and multivalent functions of one complex variable | |
| gdc.oaire.keywords | Extremal problems for conformal and quasiconformal mappings, other methods | |
| gdc.oaire.keywords | difference-differential operator | |
| gdc.oaire.keywords | open unit disk | |
| gdc.oaire.keywords | Coefficient problems for univalent and multivalent functions of one complex variable | |
| gdc.oaire.keywords | subordination and superordination | |
| gdc.oaire.popularity | 1.5483943E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.23 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.publishedmonth | 12 | |
| gdc.scopus.citedcount | 0 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
