Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

An inverse problem of reconstructing the time-dependent coefficient in a one-dimensional hyperbolic equation

Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

In this paper, for the first time the inverse problem of reconstructing the time-dependent potential (TDP) and displacement distribution in the hyperbolic problem with periodic boundary conditions (BCs) and nonlocal initial supplemented by over-determination measurement is numerically investigated. Though the inverse problem under consideration is ill-posed by being unstable to noise in the input data, it has a unique solution. The Crank-Nicolson-finite difference method (CN-FDM) along with the Tikhonov regularization (TR) is applied for calculating an accurate and stable numerical solution. The programming language MATLAB built-in lsqnonlin is used to solve the obtained nonlinear minimization problem. The simulated noisy input data can be inverted by both analytical and numerically simulated. The obtained results show that they are accurate and stable. The stability analysis is performed by using Fourier series.

Description

Huntul, Mousa J./0000-0001-5247-2913; Abbas, Dr. Muhammad/0000-0002-0491-1528

Keywords

Hyperbolic Equation, Inverse Problem, Periodic Boundary, Integral Boundary, Tikhonov Regularization, Optimization

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Huntul, M. J.; Abbas, Muhammad; Baleanu, Dumitru (2021). "An inverse problem of reconstructing the time-dependent coefficient in a one-dimensional hyperbolic equation", Advances in Difference Equations, Vol. 2021, No. 1.

WoS Q

Q1

Scopus Q

N/A

Source

Volume

2021

Issue

1

Start Page

End Page