Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

An inverse problem of reconstructing the time-dependent coefficient in a one-dimensional hyperbolic equation

dc.authorid Huntul, Mousa J./0000-0001-5247-2913
dc.authorid Abbas, Dr. Muhammad/0000-0002-0491-1528
dc.authorscopusid 57192910985
dc.authorscopusid 43660960400
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Abbas, Muhammad/K-8190-2019
dc.authorwosid Huntul, Mousa/Y-1653-2019
dc.contributor.author Huntul, M. J.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Abbas, Muhammad
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-03-16T12:33:56Z
dc.date.available 2022-03-16T12:33:56Z
dc.date.issued 2021
dc.department Çankaya University en_US
dc.department-temp [Huntul, M. J.] Jazan Univ, Fac Sci, Dept Math, Jazan, Saudi Arabia; [Abbas, Muhammad] Univ Sargodha, Dept Math, Sargodha 40100, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Fac Arts & Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, POB MG-23, R-769000 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, China Med Univ Hosp, Taichung, Taiwan en_US
dc.description Huntul, Mousa J./0000-0001-5247-2913; Abbas, Dr. Muhammad/0000-0002-0491-1528 en_US
dc.description.abstract In this paper, for the first time the inverse problem of reconstructing the time-dependent potential (TDP) and displacement distribution in the hyperbolic problem with periodic boundary conditions (BCs) and nonlocal initial supplemented by over-determination measurement is numerically investigated. Though the inverse problem under consideration is ill-posed by being unstable to noise in the input data, it has a unique solution. The Crank-Nicolson-finite difference method (CN-FDM) along with the Tikhonov regularization (TR) is applied for calculating an accurate and stable numerical solution. The programming language MATLAB built-in lsqnonlin is used to solve the obtained nonlinear minimization problem. The simulated noisy input data can be inverted by both analytical and numerically simulated. The obtained results show that they are accurate and stable. The stability analysis is performed by using Fourier series. en_US
dc.description.publishedMonth 10
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Huntul, M. J.; Abbas, Muhammad; Baleanu, Dumitru (2021). "An inverse problem of reconstructing the time-dependent coefficient in a one-dimensional hyperbolic equation", Advances in Difference Equations, Vol. 2021, No. 1. en_US
dc.identifier.doi 10.1186/s13662-021-03608-1
dc.identifier.issn 1687-1847
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85117324826
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1186/s13662-021-03608-1
dc.identifier.volume 2021 en_US
dc.identifier.wos WOS:000707593900002
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 2
dc.subject Hyperbolic Equation en_US
dc.subject Inverse Problem en_US
dc.subject Periodic Boundary en_US
dc.subject Integral Boundary en_US
dc.subject Tikhonov Regularization en_US
dc.subject Optimization en_US
dc.title An inverse problem of reconstructing the time-dependent coefficient in a one-dimensional hyperbolic equation tr_TR
dc.title An Inverse Problem of Reconstructing the Time-Dependent Coefficient in a One-Dimensional Hyperbolic Equation en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
3.31 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: