Hopf Bifurcations in Lengyel-Epstein Reaction-Diffusion Model With Discrete Time Delay
No Thumbnail Available
Date
2015
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
We investigate bifurcations of the Lengyel-Epstein reaction-diffusion model involving time delay under the Neumann boundary conditions. Choosing the delay parameter as a bifurcation parameter, we show that Hopf bifurcation occurs. We also determine two properties of the Hopf bifurcation, namely direction and stability, by applying the normal form theory and the center manifold reduction for partial functional differential equations.
Description
Merdan, Huseyin/0000-0003-2311-5348
ORCID
Keywords
Lengyel-Epstein Reaction-Diffusion Model, Hopf Bifurcation, Stability, Time Delay, Periodic Solutions
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Merdan, H., Kayan, Ş. (2015). Hopf bifurcations in Lengyel-Epstein reaction-diffusion model with discrete time delay. Nonlinear Dynamics, 79(3), 1757-1770. http://dx.doi.org/10.1007/s11071-014-1772-8
WoS Q
Q1
Scopus Q
Q1

OpenCitations Citation Count
23
Source
Volume
79
Issue
3
Start Page
1757
End Page
1770
PlumX Metrics
Citations
CrossRef : 13
Scopus : 21
Captures
Mendeley Readers : 3
Google Scholar™

OpenAlex FWCI
0.70570746
Sustainable Development Goals
2
ZERO HUNGER

8
DECENT WORK AND ECONOMIC GROWTH

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

10
REDUCED INEQUALITIES
