Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

New and More Fractional Soliton Solutions Related To Generalized Davey-Stewartson Equation Using Oblique Wave Transformation

dc.contributor.author Arshed, Saima
dc.contributor.author Khan, Kashif Ali
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Raza, Nauman
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2022-06-28T11:12:49Z
dc.date.accessioned 2025-09-18T14:10:55Z
dc.date.available 2022-06-28T11:12:49Z
dc.date.available 2025-09-18T14:10:55Z
dc.date.issued 2021
dc.description Raza, Nauman/0000-0003-0700-1033 en_US
dc.description.abstract The generalized fractional Davey-Stewartson (DSS) equation with fractional temporal derivative, which is used to explore the trends of wave propagation in water of finite depth under the effects of gravity force and surface tension, is considered in this paper. The paper addresses the full nonlinearity of the proposed model. To extract the oblique soliton solutions of the generalized fractional DSS (FDSS) equation is the dominant feature of this research. The conformable fractional derivative is used for fractional temporal derivative and oblique wave transformation is used for converting the proposed model into ordinary differential equation. Two state-of-the-art integration schemes, modified auxiliary equation (MAE) and generalized projective Riccati equations (GPREs) method have been employed for obtaining the desired oblique soliton solutions. The proposed methods successfully attain different structures of explicit solutions such as bright, dark, singular, and periodic solitary wave solutions. The occurrence of these results ensured by the limitations utilized is also exceptionally promising to additionally investigate the propagation of waves of finite depth. The latest found solutions with their existence criteria are considered. The 2D and 3D portraits are also shown for some of the reported solutions. From the graphical representations, it have been illustrated that the descriptions of waves are changed along with the change in fractional and obliqueness parameters. en_US
dc.description.publishedMonth 7
dc.identifier.citation Raza, Nauman...et al. (2021). "New and more fractional soliton solutions related to generalized Davey-Stewartson equation using oblique wave transformation", Modern Physics Letters B, Vol. 35, No. 19. en_US
dc.identifier.doi 10.1142/S0217984921503176
dc.identifier.issn 0217-9849
dc.identifier.issn 1793-6640
dc.identifier.scopus 2-s2.0-85105681666
dc.identifier.uri https://doi.org/10.1142/S0217984921503176
dc.identifier.uri https://hdl.handle.net/20.500.12416/13855
dc.language.iso en en_US
dc.publisher World Scientific Publ Co Pte Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Oblique Soliton en_US
dc.subject Generalized Projective Riccati Equations (Gpre) Method en_US
dc.subject Modified Auxiliary Equation (Mae) Method en_US
dc.title New and More Fractional Soliton Solutions Related To Generalized Davey-Stewartson Equation Using Oblique Wave Transformation en_US
dc.title New and more fractional soliton solutions related to generalized Davey-Stewartson equation using oblique wave transformation tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Raza, Nauman/0000-0003-0700-1033
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 25932481300
gdc.author.scopusid 56096097400
gdc.author.scopusid 57201342835
gdc.author.scopusid 7005872966
gdc.author.wosid Raza, Nauman/Adu-2858-2022
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Raza, Nauman; Arshed, Saima] Univ Punjab, Dept Math, Lahore, Pakistan; [Khan, Kashif Ali] Univ Engn & Technol, Dept Math, Lahore, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40447, Taiwan en_US
gdc.description.issue 19 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 35 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W3159310297
gdc.identifier.wos WOS:000667726300003
gdc.openalex.fwci 1.76840139
gdc.openalex.normalizedpercentile 0.86
gdc.opencitations.count 11
gdc.plumx.crossrefcites 9
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 14
gdc.scopus.citedcount 14
gdc.wos.citedcount 12
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files