Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

New Numerical Aspects of Caputo-Fabrizio Fractional Derivative Operator

dc.contributor.author Rangaig, Norodin A.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Qureshi, Sania
dc.date.accessioned 2020-01-13T11:31:28Z
dc.date.accessioned 2025-09-18T16:08:35Z
dc.date.available 2020-01-13T11:31:28Z
dc.date.available 2025-09-18T16:08:35Z
dc.date.issued 2019
dc.description Rangaig, Norodin/0000-0002-6471-2619; Qureshi, Sania/0000-0002-7225-2309 en_US
dc.description.abstract In this paper, a new definition for the fractional order operator called the Caputo-Fabrizio (CF) fractional derivative operator without singular kernel has been numerically approximated using the two-point finite forward difference formula for the classical first-order derivative of the function f (t) appearing inside the integral sign of the definition of the CF operator. Thus, a numerical differentiation formula has been proposed in the present study. The obtained numerical approximation was found to be of first-order convergence, having decreasing absolute errors with respect to a decrease in the time step size h used in the approximations. Such absolute errors are computed as the absolute difference between the results obtained through the proposed numerical approximation and the exact solution. With the aim of improved accuracy, the two-point finite forward difference formula has also been utilized for the continuous temporal mesh. Some mathematical models of varying nature, including a diffusion-wave equation, are numerically solved, whereas the first-order accuracy is not only verified by the error analysis but also experimentally tested by decreasing the time-step size by one order of magnitude, whereupon the proposed numerical approximation also shows a one-order decrease in the magnitude of its absolute errors computed at the final mesh point of the integration interval under consideration. en_US
dc.identifier.citation Qureshi, Sania; Rangaig, Norodin A.; Baleanu, Dumitru, "New Numerical Aspects of Caputo-Fabrizio Fractional Derivative Operator", Mathematics, Vol. 7, No. 4, (April 2019). en_US
dc.identifier.doi 10.3390/math7040374
dc.identifier.issn 2227-7390
dc.identifier.scopus 2-s2.0-85066425625
dc.identifier.uri https://doi.org/10.3390/math7040374
dc.identifier.uri https://hdl.handle.net/20.500.12416/15110
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Mathematics
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Caputo-Fabrizio en_US
dc.subject Temporal Mesh en_US
dc.subject Finite Difference en_US
dc.subject Non-Singular Kernel en_US
dc.subject 65L12 en_US
dc.subject 65Q10 en_US
dc.subject 65G40 en_US
dc.title New Numerical Aspects of Caputo-Fabrizio Fractional Derivative Operator en_US
dc.title New Numerical Aspects of Caputo-Fabrizio Fractional Derivative Operator tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Rangaig, Norodin/0000-0002-6471-2619
gdc.author.id Qureshi, Sania/0000-0002-7225-2309
gdc.author.scopusid 57204460693
gdc.author.scopusid 57200539151
gdc.author.scopusid 7005872966
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Qureshi, Sania/R-6710-2018
gdc.author.yokid 56389
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Qureshi, Sania] Mehran Univ Engn & Technol, Dept Basic Sci & Related Studies, Jamshoro 76062, Sindh, Pakistan; [Rangaig, Norodin A.] Mindanao State Univ, Dept Phys, Main Campus, Marawi City 9700, Philippines; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Atom Phys, Magurele 077125, Romania en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 374
gdc.description.volume 7 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2941843919
gdc.identifier.wos WOS:000467495500067
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 48.0
gdc.oaire.influence 6.816641E-9
gdc.oaire.isgreen false
gdc.oaire.keywords non-singular kernel
gdc.oaire.keywords Caputo-Fabrizio
gdc.oaire.keywords finite difference
gdc.oaire.keywords temporal mesh
gdc.oaire.keywords QA1-939
gdc.oaire.keywords Mathematics
gdc.oaire.popularity 4.7037958E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 6.42914438
gdc.openalex.normalizedpercentile 0.97
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 66
gdc.plumx.crossrefcites 70
gdc.plumx.mendeley 16
gdc.plumx.scopuscites 86
gdc.publishedmonth 4
gdc.scopus.citedcount 84
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 86
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files