Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Deep learning methods in the diagnosis of sacroiliitis from plain pelvic radiographs

dc.authoridOrhan, Kevser/0000-0001-8639-751X
dc.authorscopusid6507776586
dc.authorscopusid23571265400
dc.authorscopusid7006631356
dc.authorscopusid57189327598
dc.authorwosidDuran, Semra/Hge-0891-2022
dc.authorwosidOrhan, Kevser/Gvr-9735-2022
dc.contributor.authorUreten, Kemal
dc.contributor.authorMaras, Yuksel
dc.contributor.authorDuran, Semra
dc.contributor.authorGok, Kevser
dc.date.accessioned2023-11-30T12:39:52Z
dc.date.available2023-11-30T12:39:52Z
dc.date.issued2023
dc.departmentÇankaya Universityen_US
dc.department-temp[Ureten, Kemal] Kirikkale Univ, Dept Rheumatol, Fac Med, Ankara, Turkey; [Ureten, Kemal] Cankaya Univ, Computer Engn Dept, MSc, Ankara, Turkey; [Maras, Yuksel; Gok, Kevser] Ankara City Hosp, Dept Rheumatol, Ankara, Turkey; [Duran, Semra] Ankara City Hosp, Dept Radiol, Ankara, Turkeyen_US
dc.descriptionOrhan, Kevser/0000-0001-8639-751Xen_US
dc.description.abstractObjectives The aim of this study is to develop a computer-aided diagnosis method to assist physicians in evaluating sacroiliac radiographs. Methods Convolutional neural networks, a deep learning method, were used in this retrospective study. Transfer learning was implemented with pre-trained VGG-16, ResNet-101 and Inception-v3 networks. Normal pelvic radiographs (n = 290) and pelvic radiographs with sacroiliitis (n = 295) were used for the training of networks. Results The training results were evaluated with the criteria of accuracy, sensitivity, specificity and precision calculated from the confusion matrix and AUC (area under the ROC curve) calculated from ROC (receiver operating characteristic) curve. Pre-trained VGG-16 model revealed accuracy, sensitivity, specificity, precision and AUC figures of 89.9%, 90.9%, 88.9%, 88.9% and 0.96 with test images, respectively. These results were 84.3%, 91.9%, 78.8%, 75.6 and 0.92 with pre-trained ResNet-101, and 82.0%, 79.6%, 85.0%, 86.7% and 0.90 with pre-trained inception-v3, respectively. Conclusions Successful results were obtained with all three models in this study where transfer learning was applied with pre-trained VGG-16, ResNet-101 and Inception-v3 networks. This method can assist clinicians in the diagnosis of sacroiliitis, provide them with a second objective interpretation and also reduce the need for advanced imaging methods such as magnetic resonance imaging.en_US
dc.description.publishedMonth1
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationÜreten, K.;...et.al. (2023). "Deep learning methods in the diagnosis of sacroiliitis from plain pelvic radiographs", Modern rheumatology, Vol.33, No.1, pp.202-206.en_US
dc.identifier.doi10.1093/mr/roab124
dc.identifier.endpage206en_US
dc.identifier.issn1439-7595
dc.identifier.issn1439-7609
dc.identifier.issue1en_US
dc.identifier.pmid34888699
dc.identifier.scopus2-s2.0-85145491611
dc.identifier.scopusqualityQ2
dc.identifier.startpage202en_US
dc.identifier.urihttps://doi.org/10.1093/mr/roab124
dc.identifier.volume33en_US
dc.identifier.wosWOS:000764786700001
dc.identifier.wosqualityQ4
dc.language.isoenen_US
dc.publisherOxford Univ Pressen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSacroiliitisen_US
dc.subjectDeep Learningen_US
dc.subjectConvolutional Neural Networksen_US
dc.subjectTransfer Learningen_US
dc.subjectPelvic Plain Radiographsen_US
dc.titleDeep learning methods in the diagnosis of sacroiliitis from plain pelvic radiographstr_TR
dc.titleDeep Learning Methods in the Diagnosis of Sacroiliitis From Plain Pelvic Radiographsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: