Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Deep learning methods in the diagnosis of sacroiliitis from plain pelvic radiographs

dc.authorid Orhan, Kevser/0000-0001-8639-751X
dc.authorscopusid 6507776586
dc.authorscopusid 23571265400
dc.authorscopusid 7006631356
dc.authorscopusid 57189327598
dc.authorwosid Duran, Semra/Hge-0891-2022
dc.authorwosid Orhan, Kevser/Gvr-9735-2022
dc.contributor.author Ureten, Kemal
dc.contributor.author Maras, Yuksel
dc.contributor.author Duran, Semra
dc.contributor.author Gok, Kevser
dc.date.accessioned 2023-11-30T12:39:52Z
dc.date.available 2023-11-30T12:39:52Z
dc.date.issued 2023
dc.department Çankaya University en_US
dc.department-temp [Ureten, Kemal] Kirikkale Univ, Dept Rheumatol, Fac Med, Ankara, Turkey; [Ureten, Kemal] Cankaya Univ, Computer Engn Dept, MSc, Ankara, Turkey; [Maras, Yuksel; Gok, Kevser] Ankara City Hosp, Dept Rheumatol, Ankara, Turkey; [Duran, Semra] Ankara City Hosp, Dept Radiol, Ankara, Turkey en_US
dc.description Orhan, Kevser/0000-0001-8639-751X en_US
dc.description.abstract Objectives The aim of this study is to develop a computer-aided diagnosis method to assist physicians in evaluating sacroiliac radiographs. Methods Convolutional neural networks, a deep learning method, were used in this retrospective study. Transfer learning was implemented with pre-trained VGG-16, ResNet-101 and Inception-v3 networks. Normal pelvic radiographs (n = 290) and pelvic radiographs with sacroiliitis (n = 295) were used for the training of networks. Results The training results were evaluated with the criteria of accuracy, sensitivity, specificity and precision calculated from the confusion matrix and AUC (area under the ROC curve) calculated from ROC (receiver operating characteristic) curve. Pre-trained VGG-16 model revealed accuracy, sensitivity, specificity, precision and AUC figures of 89.9%, 90.9%, 88.9%, 88.9% and 0.96 with test images, respectively. These results were 84.3%, 91.9%, 78.8%, 75.6 and 0.92 with pre-trained ResNet-101, and 82.0%, 79.6%, 85.0%, 86.7% and 0.90 with pre-trained inception-v3, respectively. Conclusions Successful results were obtained with all three models in this study where transfer learning was applied with pre-trained VGG-16, ResNet-101 and Inception-v3 networks. This method can assist clinicians in the diagnosis of sacroiliitis, provide them with a second objective interpretation and also reduce the need for advanced imaging methods such as magnetic resonance imaging. en_US
dc.description.publishedMonth 1
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Üreten, K.;...et.al. (2023). "Deep learning methods in the diagnosis of sacroiliitis from plain pelvic radiographs", Modern rheumatology, Vol.33, No.1, pp.202-206. en_US
dc.identifier.doi 10.1093/mr/roab124
dc.identifier.endpage 206 en_US
dc.identifier.issn 1439-7595
dc.identifier.issn 1439-7609
dc.identifier.issue 1 en_US
dc.identifier.pmid 34888699
dc.identifier.scopus 2-s2.0-85145491611
dc.identifier.scopusquality Q2
dc.identifier.startpage 202 en_US
dc.identifier.uri https://doi.org/10.1093/mr/roab124
dc.identifier.volume 33 en_US
dc.identifier.wos WOS:000764786700001
dc.identifier.wosquality Q4
dc.language.iso en en_US
dc.publisher Oxford Univ Press en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 20
dc.subject Sacroiliitis en_US
dc.subject Deep Learning en_US
dc.subject Convolutional Neural Networks en_US
dc.subject Transfer Learning en_US
dc.subject Pelvic Plain Radiographs en_US
dc.title Deep learning methods in the diagnosis of sacroiliitis from plain pelvic radiographs tr_TR
dc.title Deep Learning Methods in the Diagnosis of Sacroiliitis From Plain Pelvic Radiographs en_US
dc.type Article en_US
dc.wos.citedbyCount 16
dspace.entity.type Publication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: