On Time Fractional Pseudo-Parabolic Equations With Nonlocal Integral Conditions
| dc.contributor.author | O'Regan, Donal | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Tuan, Nguyen H. | |
| dc.contributor.author | Nguyen Anh Tuan | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2022-11-30T08:40:56Z | |
| dc.date.accessioned | 2025-09-18T12:09:49Z | |
| dc.date.available | 2022-11-30T08:40:56Z | |
| dc.date.available | 2025-09-18T12:09:49Z | |
| dc.date.issued | 2022 | |
| dc.description | Nguyen, Anh Tuan/0000-0002-8757-9742 | en_US |
| dc.description.abstract | In this paper, we study the nonlocal problem for pseudo-parabolic equation with time and space fractional derivatives. The time derivative is of Caputo type and of order sigma, 0 < sigma < 1 and the space fractional derivative is of order alpha, beta > 0. In the first part, we obtain some results of the existence and uniqueness of our problem with suitably chosen alpha, beta. The technique uses a Sobolev embedding and is based on constructing a Mittag-Leffler operator. In the second part, we give the ill-posedness of our problem and give a regularized solution. An error estimate in L-p between the regularized solution and the sought solution is obtained. | en_US |
| dc.description.publishedMonth | 2 | |
| dc.identifier.citation | Tuan, Nguyen Anh...et al. (2022). "ON TIME FRACTIONAL PSEUDO-PARABOLIC EQUATIONS WITH NONLOCAL INTEGRAL CONDITIONS", Evolution Equations and Control Theory, Vol. 11, no. 1, pp. 225-238. | en_US |
| dc.identifier.doi | 10.3934/eect.2020109 | |
| dc.identifier.issn | 2163-2480 | |
| dc.identifier.scopus | 2-s2.0-85111581433 | |
| dc.identifier.uri | https://doi.org/10.3934/eect.2020109 | |
| dc.identifier.uri | https://hdl.handle.net/123456789/11531 | |
| dc.language.iso | en | en_US |
| dc.publisher | Amer inst Mathematical Sciences-aims | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Fractional Partial Differential Equation | en_US |
| dc.subject | Caputo Fractional | en_US |
| dc.subject | Well-Posedness | en_US |
| dc.subject | Pseudo-Parabolic Equation | en_US |
| dc.subject | Nonlocal Conditions | en_US |
| dc.subject | Nonlocal In Time | en_US |
| dc.title | On Time Fractional Pseudo-Parabolic Equations With Nonlocal Integral Conditions | en_US |
| dc.title | ON TIME FRACTIONAL PSEUDO-PARABOLIC EQUATIONS WITH NONLOCAL INTEGRAL CONDITIONS | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Nguyen, Anh Tuan/0000-0002-8757-9742 | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 59036224800 | |
| gdc.author.scopusid | 36049459000 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 17347203900 | |
| gdc.author.wosid | Nguyen, Tuan/C-6183-2015 | |
| gdc.author.wosid | Nguyen, Anh Tuan/Gxf-6089-2022 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | O'Regan, Donal/I-3184-2015 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Nguyen Anh Tuan; Tuan, Nguyen H.] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot City, Binh Duong Prov, Vietnam; [O'Regan, Donal] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Fac Arts & Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, POB MG 23, R-76900 Magurele, Romania | en_US |
| gdc.description.endpage | 238 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 225 | en_US |
| gdc.description.volume | 11 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3112977326 | |
| gdc.identifier.wos | WOS:000701708200001 | |
| gdc.openalex.fwci | 1.27214152 | |
| gdc.openalex.normalizedpercentile | 0.8 | |
| gdc.opencitations.count | 12 | |
| gdc.plumx.crossrefcites | 4 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 18 | |
| gdc.scopus.citedcount | 18 | |
| gdc.wos.citedcount | 17 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |