New Generalizations in the Sense of the Weighted Non-Singular Fractional Integral Operator
| dc.contributor.author | Hammouch, Zakia | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Chu, Yu-Ming | |
| dc.contributor.author | Rashid, Saima | |
| dc.date.accessioned | 2022-07-07T11:45:47Z | |
| dc.date.accessioned | 2025-09-18T14:09:55Z | |
| dc.date.available | 2022-07-07T11:45:47Z | |
| dc.date.available | 2025-09-18T14:09:55Z | |
| dc.date.issued | 2020 | |
| dc.description | Hammouch, Zakia/0000-0001-7349-6922 | en_US |
| dc.description.abstract | In this paper, we propose a new fractional operator which is based on the weight function for Atangana{Baleanu (AB)-fractional operators. A motivating characteristic is the generalization of classical variants within the weighted AB-fractional integral. We aim to establish Minkowski and reverse Holder inequalities by employing weighted AB-fractional integral. The consequences demonstrate that the obtained technique is well-organized and appropriate. | en_US |
| dc.description.sponsorship | The authors would like to thank the anonymous referees for their valuable suggestions and comments. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 61673169, 11701176, 11626101, 11601485 and 11871202). | en_US |
| dc.description.sponsorship | National Natural Science Foundation of China [11971142, 61673169, 11701176, 11626101, 11601485, 11871202] | en_US |
| dc.identifier.citation | Rashid, Saima...et al. (2020). "New generalizations in the sense of the weighted non-singular fractional integral operator", Fractals, Vol. 28, No. 8. | en_US |
| dc.identifier.doi | 10.1142/S0218348X20400034 | |
| dc.identifier.issn | 0218-348X | |
| dc.identifier.issn | 1793-6543 | |
| dc.identifier.scopus | 2-s2.0-85088275606 | |
| dc.identifier.uri | https://doi.org/10.1142/S0218348X20400034 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/13532 | |
| dc.language.iso | en | en_US |
| dc.publisher | World Scientific Publ Co Pte Ltd | en_US |
| dc.relation.ispartof | Fractals | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Weighted Ab-Fractional Operator | en_US |
| dc.subject | Minkowski Inequality | en_US |
| dc.subject | Reverse Holder Inequality | en_US |
| dc.title | New Generalizations in the Sense of the Weighted Non-Singular Fractional Integral Operator | en_US |
| dc.title | New generalizations in the sense of the weighted non-singular fractional integral operator | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Hammouch, Zakia/0000-0001-7349-6922 | |
| gdc.author.scopusid | 57200041124 | |
| gdc.author.scopusid | 12768922000 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 9839077200 | |
| gdc.author.wosid | Hammouch, Zakia/D-3532-2011 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Rashid, Saima/Aaf-7976-2021 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Rashid, Saima] Govt Coll Univ, Dept Math, Faisalabad, Pakistan; [Hammouch, Zakia] Moulay Ismail Univ Meknes, Fac Sci & Tech, Errachidia 52000, Morocco; [Hammouch, Zakia] Harran Univ, Dept Math & Sci Educ, Sanliurfa, Turkey; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey; [Chu, Yu-Ming] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China; [Chu, Yu-Ming] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Peoples R China | en_US |
| gdc.description.issue | 8 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 2040003 | |
| gdc.description.volume | 28 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3022237750 | |
| gdc.identifier.wos | WOS:000605620400028 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 24.0 | |
| gdc.oaire.influence | 3.9529926E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Generalization | |
| gdc.oaire.keywords | Evolutionary biology | |
| gdc.oaire.keywords | Operator (biology) | |
| gdc.oaire.keywords | Matrix Inequalities and Geometric Means | |
| gdc.oaire.keywords | Theory and Applications of Fractional Differential Equations | |
| gdc.oaire.keywords | Mathematical analysis | |
| gdc.oaire.keywords | Biochemistry | |
| gdc.oaire.keywords | Gene | |
| gdc.oaire.keywords | Fractional Integrals | |
| gdc.oaire.keywords | Fractional derivatives and integrals | |
| gdc.oaire.keywords | weighted \(\mathcal{AB}\)-fractional operator | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | reverse Hölder inequality | |
| gdc.oaire.keywords | Biology | |
| gdc.oaire.keywords | Anomalous Diffusion Modeling and Analysis | |
| gdc.oaire.keywords | Singular integral | |
| gdc.oaire.keywords | Integral equation | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | Minkowski inequality | |
| gdc.oaire.keywords | Fractional calculus | |
| gdc.oaire.keywords | Pure mathematics | |
| gdc.oaire.keywords | Applied mathematics | |
| gdc.oaire.keywords | Fractional Derivatives | |
| gdc.oaire.keywords | Weight function | |
| gdc.oaire.keywords | Chemistry | |
| gdc.oaire.keywords | Function (biology) | |
| gdc.oaire.keywords | Modeling and Simulation | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Repressor | |
| gdc.oaire.keywords | Fractional Calculus | |
| gdc.oaire.keywords | Transcription factor | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.popularity | 1.5821998E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 8.00579363 | |
| gdc.openalex.normalizedpercentile | 0.99 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 24 | |
| gdc.plumx.crossrefcites | 25 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 37 | |
| gdc.publishedmonth | 12 | |
| gdc.scopus.citedcount | 37 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 29 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
