Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Regularization of the Inverse Problem for Time Fractional Pseudo-Parabolic Equation With Non-Local in Time Conditions

dc.contributor.author Le Dinh Long
dc.contributor.author Anh Tuan Nguyen
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Nguyen Duc Phuong
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-05-14T08:07:53Z
dc.date.accessioned 2025-09-18T14:10:00Z
dc.date.available 2024-05-14T08:07:53Z
dc.date.available 2025-09-18T14:10:00Z
dc.date.issued 2022
dc.description.abstract This paper is devoted to identifying an unknown source for a time-fractional diffusion equation in a general bounded domain. First, we prove the problem is non-well posed and the stability of the source function. Second, by using the Modified Fractional Landweber method, we present regularization solutions and show the convergence rate between regularization solutions and sought solution are given under a priori and a posteriori choice rules of the regularization parameter, respectively. Finally, we present an illustrative numerical example to test the results of our theory. en_US
dc.description.publishedMonth 12
dc.description.sponsorship Industrial University of Ho Chi Minh City (IUH) [130/HD-DHCN]; Van Lang University en_US
dc.description.sponsorship We thank the referees for their time and comments. This research is supported by Industrial University of Ho Chi Minh City (IUH) under Grant Number 130/HD-DHCN. The authors Le Dinh Long and Anh Tuan Nguyen are supported by Van Lang University. en_US
dc.identifier.citation Phuong, Nguyen Duc;...et.al. (2022). "Regularization of the Inverse Problem for Time Fractional Pseudo-parabolic Equation with Non-local in Time Conditions", Acta Mathematica Sinica, English Series, Vol.38, No.12, pp.2199-2219. en_US
dc.identifier.doi 10.1007/s10114-022-1234-z
dc.identifier.issn 1439-8516
dc.identifier.issn 1439-7617
dc.identifier.scopus 2-s2.0-85137204242
dc.identifier.uri https://doi.org/10.1007/s10114-022-1234-z
dc.identifier.uri https://hdl.handle.net/20.500.12416/13554
dc.language.iso en en_US
dc.publisher Springer Heidelberg en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Source Problem en_US
dc.subject Fractional Pseudo-Parabolic Problem en_US
dc.subject Ill-Posed Problem en_US
dc.subject Convergence Estimates en_US
dc.subject Regularization en_US
dc.title Regularization of the Inverse Problem for Time Fractional Pseudo-Parabolic Equation With Non-Local in Time Conditions en_US
dc.title Regularization of the Inverse Problem for Time Fractional Pseudo-parabolic Equation with Non-local in Time Conditions tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 57209410617
gdc.author.scopusid 57072750200
gdc.author.scopusid 59036224800
gdc.author.scopusid 7005872966
gdc.author.wosid Long, Le/Gsd-8876-2022
gdc.author.wosid Nguyen, Tuan/C-6183-2015
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Nguyen Duc Phuong] Ind Univ Ho Chi Minh City, Fac Fundamental Sci, Ho Chi Minh City, Vietnam; [Le Dinh Long; Anh Tuan Nguyen] Van Lang Univ, Sci & Technol Adv Inst, Div Appl Math, Ho Chi Minh City, Vietnam; [Le Dinh Long; Anh Tuan Nguyen] Van Lang Univ, Fac Technol, Ho Chi Minh City, Vietnam; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Lebanese Amer Univ, Beirut, Lebanon; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania en_US
gdc.description.endpage 2219 en_US
gdc.description.issue 12 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 2199 en_US
gdc.description.volume 38 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.identifier.openalex W4293576152
gdc.identifier.wos WOS:000847609100004
gdc.openalex.fwci 1.91775586
gdc.openalex.normalizedpercentile 0.82
gdc.opencitations.count 9
gdc.plumx.crossrefcites 2
gdc.plumx.scopuscites 12
gdc.scopus.citedcount 12
gdc.wos.citedcount 10
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files