Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Multiple linear regression model with stochastic design variables

dc.contributor.authorIslam, M. Qamarul
dc.contributor.authorTiku, Moti L.
dc.date.accessioned2016-06-13T11:16:32Z
dc.date.available2016-06-13T11:16:32Z
dc.date.issued2010
dc.departmentÇankaya Üniversitesi, İktisadi İdari Bilimler Fakültesi, İktisat Bölümüen_US
dc.description.abstractIn a simple multiple linear regression model, the design variables have traditionally been assumed to be non-stochastic. In numerous real-life situations, however, they are stochastic and non-normal. Estimators of parameters applicable to such situations are developed. It is shown that these estimators are efficient and robust. A real-life example is givenen_US
dc.identifier.citationIslam, M.Q., Tiku, M.L. (2010). Multiple linear regression model with stochastic design variables. Journal of Applied Statistics, 37(6), 923-943. http://dx.doi.org/10.1080/02664760902939612en_US
dc.identifier.doi10.1080/02664760902939612
dc.identifier.endpage943en_US
dc.identifier.issn0266-4763
dc.identifier.issue6en_US
dc.identifier.startpage923en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/1086
dc.identifier.volume37en_US
dc.language.isoenen_US
dc.publisherRoutledge Journalsen_US
dc.relation.ispartofJournal of Applied Statisticsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCorrelation Coefficienten_US
dc.subjectLeast Squaresen_US
dc.subjectLinear Regressionen_US
dc.subjectModified Maximum Likelihooden_US
dc.subjectMultivariate Distributionsen_US
dc.subjectNon-Normalityen_US
dc.subjectRandom Designen_US
dc.titleMultiple linear regression model with stochastic design variablestr_TR
dc.titleMultiple Linear Regression Model With Stochastic Design Variablesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: