Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Parallel Data Reduction Techniques for Big Datasets

dc.contributor.author Özdoğan, C.
dc.contributor.author Watson, D.
dc.contributor.author Yildirim, A.A.
dc.contributor.authorID 40569 tr_TR
dc.contributor.other 09.01. Ortak Dersler Bölümü
dc.contributor.other 09. Rektörlük
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2022-12-02T11:35:02Z
dc.date.accessioned 2025-09-18T13:26:25Z
dc.date.available 2022-12-02T11:35:02Z
dc.date.available 2025-09-18T13:26:25Z
dc.date.issued 2013
dc.description.abstract Data reduction is perhaps the most critical component in retrieving information from big data (i.e., petascale-sized data) in many data-mining processes. The central issue of these data reduction techniques is to save time and bandwidth in enabling the user to deal with larger datasets even in minimal resource environments, such as in desktop or small cluster systems. In this chapter, the authors examine the motivations behind why these reduction techniques are important in the analysis of big datasets. Then they present several basic reduction techniques in detail, stressing the advantages and disadvantages of each. The authors also consider signal processing techniques for mining big data by the use of discrete wavelet transformation and server-side data reduction techniques. Lastly, they include a general discussion on parallel algorithms for data reduction, with special emphasis given to parallel waveletbased multi-resolution data reduction techniques on distributed memory systems using MPI and shared memory architectures on GPUs along with a demonstration of the improvement of performance and scalability for one case study. © 2014, IGI Global. All right reserved. en_US
dc.description.publishedMonth 10
dc.identifier.citation Yıldırım, Ahmet Artu; Özdoğan, Cem; Watson, Dan (2013). "Parallel data reduction techniques for big datasets", Big Data Management, Technologies, and Applications, pp. 72-93. en_US
dc.identifier.doi 10.4018/978-1-4666-4699-5.ch004
dc.identifier.isbn 9781466647008
dc.identifier.isbn 1466646993
dc.identifier.isbn 9781466646995
dc.identifier.scopus 2-s2.0-84946005431
dc.identifier.uri https://doi.org/10.4018/978-1-4666-4699-5.ch004
dc.identifier.uri https://hdl.handle.net/123456789/12603
dc.language.iso en en_US
dc.publisher IGI Global en_US
dc.relation.ispartof Big Data Management, Technologies, and Applications en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.title Parallel Data Reduction Techniques for Big Datasets en_US
dc.title Parallel data reduction techniques for big datasets tr_TR
dc.type Book Part en_US
dspace.entity.type Publication
gdc.author.institutional Özdoğan, Cem
gdc.author.scopusid 37058218500
gdc.author.scopusid 7801368240
gdc.author.scopusid 7402906366
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp Yildirim A.A., Department of Computer Science, Utah State University, United States; Özdoğan C., Çankaya University, Ankara, Turkey; Watson D., Department of Computer Science, Utah State University, United States en_US
gdc.description.endpage 93 en_US
gdc.description.publicationcategory Kitap Bölümü - Uluslararası en_US
gdc.description.startpage 72 en_US
gdc.identifier.openalex W4239202384
gdc.openalex.fwci 1.93057639
gdc.openalex.normalizedpercentile 0.88
gdc.opencitations.count 10
gdc.plumx.crossrefcites 6
gdc.plumx.mendeley 15
gdc.plumx.scopuscites 20
gdc.scopus.citedcount 20
relation.isAuthorOfPublication ea22b624-d90d-48d1-b3d1-addccc6b280d
relation.isAuthorOfPublication.latestForDiscovery ea22b624-d90d-48d1-b3d1-addccc6b280d
relation.isOrgUnitOfPublication c26f9572-660d-46b5-a627-8e3068321c89
relation.isOrgUnitOfPublication 79403971-5ab2-4efd-ac9e-f03745af3705
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery c26f9572-660d-46b5-a627-8e3068321c89

Files