Further Results on the Neutrix Composition of Distributions Involving the Delta Function and the Function Cosh+<sup>-1</Sup> (x<sup>1/R<
| dc.contributor.author | Tas, Kenan | |
| dc.contributor.author | Fisher, Brian | |
| dc.contributor.authorID | 4971 | tr_TR |
| dc.date.accessioned | 2020-01-28T12:59:50Z | |
| dc.date.accessioned | 2025-09-18T12:47:18Z | |
| dc.date.available | 2020-01-28T12:59:50Z | |
| dc.date.available | 2025-09-18T12:47:18Z | |
| dc.date.issued | 2019 | |
| dc.description.abstract | The neutrix composition F(f(x)) of a distribution F(x) and a locally summable function f(x) is said to exist and be equal to the distribution h(x) if the neutrix limit of the sequence {F-n(f(x))) is equal to h(x), where F-n(x) = F(x) * delta(n)(x) and {delta(n)(x)} is a certain sequence of infinitely differentiable functions converging to the Dirac delta-function delta(x). The function cosh(+)(-1)(x + 1) is defined by cosh(+)(-1)(x+ 1) = H(x) cosh(-1)(vertical bar x vertical bar + 1), where H(x) denotes Heaviside's function. It is then proved that the neutrix composition delta((s))[cosh(+)(-1)(x(1/r) + 1)] exists and delta((s))[cosh(+)(-1)(x(1/r) + 1] = Sigma(s-1)(k=0) Sigma(kr+r-1)(j=0) Sigma(j)(i=0) (-1)(kr+r+s-j-1)r/2(j+2) ((kr + r -1)(j)) ((j)(i)) [(j - 2i + 1)(s) - (j - 2i -1)(s)]delta((k))(x) for r, s = 1, 2, .... Further results are also proved. Our results improve, extend and generalize the main theorem of [Fisher B., Al-Sirehy F., Some results on the neutrix composition of distributions involving the delta function and the function cosh(+)(-1) (x + 1), Appl. Math. Sci. (Ruse), 2014, 8(153), 7629-7640]. | en_US |
| dc.description.publishedMonth | 1 | |
| dc.identifier.citation | Fisher, Brian; Taş, Kenan, "Further results on the neutrix composition of distributions involving the delta function and the function cosh(+)(-1) (x(1/r)", Demonstratio Mathematica, Vol. 52, No. 1, pp. 249-255, (2019). | en_US |
| dc.identifier.doi | 10.1515/dema-2019-0021 | |
| dc.identifier.issn | 0420-1213 | |
| dc.identifier.issn | 2391-4661 | |
| dc.identifier.scopus | 2-s2.0-85079369680 | |
| dc.identifier.uri | https://doi.org/10.1515/dema-2019-0021 | |
| dc.identifier.uri | https://hdl.handle.net/123456789/11759 | |
| dc.language.iso | en | en_US |
| dc.publisher | de Gruyter Poland Sp Z O O | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Distribution | en_US |
| dc.subject | Dirac-Delta Function | en_US |
| dc.subject | Composition Of Distributions | en_US |
| dc.subject | Neutrix | en_US |
| dc.subject | Neutrix Limit | en_US |
| dc.title | Further Results on the Neutrix Composition of Distributions Involving the Delta Function and the Function Cosh+<sup>-1</Sup> (x<sup>1/R< | en_US |
| dc.title | Further results on the neutrix composition of distributions involving the delta function and the function cosh(+)(-1) (x(1/r) | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Taş, Kenan | |
| gdc.author.scopusid | 7402131987 | |
| gdc.author.scopusid | 9279157700 | |
| gdc.author.wosid | Tas, Kenan/D-8441-2011 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Fisher, Brian] Univ Leicester, Dept Math, Leicester LE1 7RH, Leics, England; [Tas, Kenan] Cankaya Univ, Dept Math, Ankara, Turkey | en_US |
| gdc.description.endpage | 255 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 249 | en_US |
| gdc.description.volume | 52 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2959368426 | |
| gdc.identifier.wos | WOS:000476656500001 | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.15 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.scopus.citedcount | 0 | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | 9cc98397-8c8f-4713-aa8a-09add1eac3bb | |
| relation.isAuthorOfPublication.latestForDiscovery | 9cc98397-8c8f-4713-aa8a-09add1eac3bb | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |