Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Further Results on the Neutrix Composition of Distributions Involving the Delta Function and the Function Cosh+<sup>-1</Sup> (x<sup>1/R<

dc.contributor.author Tas, Kenan
dc.contributor.author Fisher, Brian
dc.contributor.authorID 4971 tr_TR
dc.date.accessioned 2020-01-28T12:59:50Z
dc.date.accessioned 2025-09-18T12:47:18Z
dc.date.available 2020-01-28T12:59:50Z
dc.date.available 2025-09-18T12:47:18Z
dc.date.issued 2019
dc.description.abstract The neutrix composition F(f(x)) of a distribution F(x) and a locally summable function f(x) is said to exist and be equal to the distribution h(x) if the neutrix limit of the sequence {F-n(f(x))) is equal to h(x), where F-n(x) = F(x) * delta(n)(x) and {delta(n)(x)} is a certain sequence of infinitely differentiable functions converging to the Dirac delta-function delta(x). The function cosh(+)(-1)(x + 1) is defined by cosh(+)(-1)(x+ 1) = H(x) cosh(-1)(vertical bar x vertical bar + 1), where H(x) denotes Heaviside's function. It is then proved that the neutrix composition delta((s))[cosh(+)(-1)(x(1/r) + 1)] exists and delta((s))[cosh(+)(-1)(x(1/r) + 1] = Sigma(s-1)(k=0) Sigma(kr+r-1)(j=0) Sigma(j)(i=0) (-1)(kr+r+s-j-1)r/2(j+2) ((kr + r -1)(j)) ((j)(i)) [(j - 2i + 1)(s) - (j - 2i -1)(s)]delta((k))(x) for r, s = 1, 2, .... Further results are also proved. Our results improve, extend and generalize the main theorem of [Fisher B., Al-Sirehy F., Some results on the neutrix composition of distributions involving the delta function and the function cosh(+)(-1) (x + 1), Appl. Math. Sci. (Ruse), 2014, 8(153), 7629-7640]. en_US
dc.description.publishedMonth 1
dc.identifier.citation Fisher, Brian; Taş, Kenan, "Further results on the neutrix composition of distributions involving the delta function and the function cosh(+)(-1) (x(1/r)", Demonstratio Mathematica, Vol. 52, No. 1, pp. 249-255, (2019). en_US
dc.identifier.doi 10.1515/dema-2019-0021
dc.identifier.issn 0420-1213
dc.identifier.issn 2391-4661
dc.identifier.scopus 2-s2.0-85079369680
dc.identifier.uri https://doi.org/10.1515/dema-2019-0021
dc.identifier.uri https://hdl.handle.net/123456789/11759
dc.language.iso en en_US
dc.publisher de Gruyter Poland Sp Z O O en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Distribution en_US
dc.subject Dirac-Delta Function en_US
dc.subject Composition Of Distributions en_US
dc.subject Neutrix en_US
dc.subject Neutrix Limit en_US
dc.title Further Results on the Neutrix Composition of Distributions Involving the Delta Function and the Function Cosh+<sup>-1</Sup> (x<sup>1/R< en_US
dc.title Further results on the neutrix composition of distributions involving the delta function and the function cosh(+)(-1) (x(1/r) tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Taş, Kenan
gdc.author.scopusid 7402131987
gdc.author.scopusid 9279157700
gdc.author.wosid Tas, Kenan/D-8441-2011
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Fisher, Brian] Univ Leicester, Dept Math, Leicester LE1 7RH, Leics, England; [Tas, Kenan] Cankaya Univ, Dept Math, Ankara, Turkey en_US
gdc.description.endpage 255 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 249 en_US
gdc.description.volume 52 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2959368426
gdc.identifier.wos WOS:000476656500001
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.15
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.wos.citedcount 0
relation.isAuthorOfPublication 9cc98397-8c8f-4713-aa8a-09add1eac3bb
relation.isAuthorOfPublication.latestForDiscovery 9cc98397-8c8f-4713-aa8a-09add1eac3bb
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files