Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Dynamical System Parameter Identification Using Deep Recurrent Cell Networks Which Gated Recurrent Unit and When

dc.contributor.author Akagunduz, Erdem
dc.contributor.author Cifdaloz, Oguzhan
dc.contributor.authorID 279762 tr_TR
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2023-02-15T11:13:35Z
dc.date.accessioned 2025-09-18T12:06:46Z
dc.date.available 2023-02-15T11:13:35Z
dc.date.available 2025-09-18T12:06:46Z
dc.date.issued 2021
dc.description Cifdaloz, Oguzhan/0000-0003-0523-946X; Akagunduz, Erdem/0000-0002-0792-7306 en_US
dc.description.abstract In this paper, we investigate the parameter identification problem in dynamical systems through a deep learning approach. Focusing mainly on second-order, linear time-invariant dynamical systems, the topic of damping factor identification is studied. By utilizing a six-layer deep neural network with different recurrent cells, namely GRUs, LSTMs or BiLSTMs; and by feeding input/output sequence pairs captured from a dynamical system simulator, we search for an effective deep recurrent architecture in order to resolve the damping factor identification problem. Our study's results show that, although previously not utilized for this task in the literature, bidirectional gated recurrent cells (BiLSTMs) provide better parameter identification results when compared to unidirectional gated recurrent memory cells such as GRUs and LSTM. Thus, indicating that an input/output sequence pair of finite length, collected from a dynamical system and when observed anachronistically, may carry information in both time directions to predict a dynamical systems parameter. en_US
dc.description.publishedMonth 12
dc.identifier.citation Akagündüz, Erdem; Çifdalöz, Oğuzhan (2021). "Dynamical system parameter identification using deep recurrent cell networks: Which gated recurrent unit and when?", Neural Computing and Applications, Vol. 33, No. 23, pp. 16745-16757. en_US
dc.identifier.doi 10.1007/s00521-021-06271-5
dc.identifier.issn 0941-0643
dc.identifier.issn 1433-3058
dc.identifier.scopus 2-s2.0-85110437514
dc.identifier.uri https://doi.org/10.1007/s00521-021-06271-5
dc.identifier.uri https://hdl.handle.net/123456789/10990
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Dynamical Systems Parameter Identification en_US
dc.subject Recurrent Cells en_US
dc.subject Lstm en_US
dc.subject Gru en_US
dc.subject Bilstm en_US
dc.title Dynamical System Parameter Identification Using Deep Recurrent Cell Networks Which Gated Recurrent Unit and When en_US
dc.title Dynamical system parameter identification using deep recurrent cell networks: Which gated recurrent unit and when? tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Cifdaloz, Oguzhan/0000-0003-0523-946X
gdc.author.id Akagunduz, Erdem/0000-0002-0792-7306
gdc.author.scopusid 8331988500
gdc.author.scopusid 6508048390
gdc.author.wosid Cifdaloz, Oguzhan/F-5301-2018
gdc.author.wosid Akagunduz, Erdem/W-1788-2018
gdc.author.wosid Cifdaloz, Oguzhan/Aai-3186-2021
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Akagunduz, Erdem] Middle East Tech Univ METU, Grad Sch Informat, Ankara, Turkey; [Cifdaloz, Oguzhan] Cankaya Univ, Dept Elect & Elect Engn, Ankara, Turkey en_US
gdc.description.endpage 16757 en_US
gdc.description.issue 23 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 16745 en_US
gdc.description.volume 33 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W3179522223
gdc.identifier.wos WOS:000671629100001
gdc.openalex.fwci 0.27504427
gdc.openalex.normalizedpercentile 0.57
gdc.opencitations.count 3
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 1
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files