Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Robust Principal Component Analysis by Reverse Iterative Linear Programming

dc.authorscopusid 57191283187
dc.authorscopusid 7004234709
dc.authorscopusid 6506794189
dc.contributor.author Visentin, A.
dc.contributor.author Prestwich, S.
dc.contributor.author Armagan Tarim, S.
dc.contributor.authorID 6641 tr_TR
dc.date.accessioned 2024-03-27T12:32:39Z
dc.date.available 2024-03-27T12:32:39Z
dc.date.issued 2016
dc.department Çankaya University en_US
dc.department-temp Visentin A., Insight Centre for Data Analytics, Department of Computer Science, University College Cork, Cork, Ireland; Prestwich S., Insight Centre for Data Analytics, Department of Computer Science, University College Cork, Cork, Ireland; Armagan Tarim S., Department of Management, Cankaya University, Ankara, Turkey en_US
dc.description Deloitte; et al; Google; IBM; Siemens; Unicredit en_US
dc.description.abstract Principal Components Analysis (PCA) is a data analysis technique widely used in dimensionality reduction. It extracts a small number of orthonormal vectors that explain most of the variation in a dataset, which are called the Principal Components. Conventional PCA is sensitive to outliers because it is based on the L2-norm, so to improve robustness several algorithms based on the L1-norm have been introduced in the literature. We present a new algorithm for robust L1- norm PCA that computes components iteratively in reverse, using a new heuristic based on Linear Programming. This solution is focused on finding the projection that minimizes the variance of the projected points. It has only one parameter to tune, making it simple to use. On common benchmarks it performs competitively compared to other methods. The data and software related to this paper are available at https://github. com/visentin-insight/L1-PCAhp. © Springer International Publishing AG 2016. en_US
dc.identifier.citation Visentin, Andrea; Prestwich, Steven; Tarım, S. Armağan. "Robust Principal Component Analysis by Reverse Iterative Linear Programming", Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2016, pp. 593-605. en_US
dc.identifier.doi 10.1007/978-3-319-46227-1_37
dc.identifier.endpage 605 en_US
dc.identifier.isbn 9783319462264
dc.identifier.issn 0302-9743
dc.identifier.scopus 2-s2.0-84988568612
dc.identifier.scopusquality Q3
dc.identifier.startpage 593 en_US
dc.identifier.uri https://doi.org/10.1007/978-3-319-46227-1_37
dc.identifier.volume 9852 LNAI en_US
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Springer Verlag en_US
dc.relation.ispartof Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) -- 15th European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2016 -- 19 September 2016 through 23 September 2016 -- Riva del Garda -- 181419 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 3
dc.subject L1-Norm en_US
dc.subject Linear Programming en_US
dc.subject Principal Components Analysis en_US
dc.subject Robust en_US
dc.title Robust Principal Component Analysis by Reverse Iterative Linear Programming tr_TR
dc.title Robust Principal Component Analysis by Reverse Iterative Linear Programming en_US
dc.type Conference Object en_US
dspace.entity.type Publication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: