Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

About Lagrangian Formulation of Classical Fields Within Riemann-Liouville Fractional Derivatives

dc.contributor.author Baleanu, D.
dc.contributor.author Muslih, S.I.
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2025-05-13T13:30:14Z
dc.date.available 2025-05-13T13:30:14Z
dc.date.issued 2005
dc.description ASME Computers and Information in Engineering Division; ASME Design Engineering Division en_US
dc.description.abstract Recently, an extension of the simplest fractional problem and the fractional variational problem of Lagrange was obtained by Agrawal. The first part of this study presents the fractional Lagrangian formulation of mechanical systems and introduce the Levy path integral. The second part is an extension to Agrawal's approach to classical fields with fractional derivatives. The classical fields with fractional derivatives are investigated by using the Lagrangian formulation. The case of the fractional Schrödinger equation is presented. Copyright © 2005 by ASME. en_US
dc.identifier.doi 10.1115/detc2005-84390
dc.identifier.isbn 0791847438
dc.identifier.isbn 9780791847435
dc.identifier.scopus 2-s2.0-33244457446
dc.identifier.uri https://doi.org/10.1115/detc2005-84390
dc.identifier.uri https://hdl.handle.net/20.500.12416/9903
dc.language.iso en en_US
dc.publisher American Society of Mechanical Engineers en_US
dc.relation.ispartof Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference - DETC2005 -- DETC2005: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference -- 24 September 2005 through 28 September 2005 -- Long Beach, CA -- 66675 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.title About Lagrangian Formulation of Classical Fields Within Riemann-Liouville Fractional Derivatives en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 7005872966
gdc.author.scopusid 7003657106
gdc.author.wosid Muslih, Sami/Aaf-4974-2020
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp Baleanu D., Department of Mathematics and Computer Sciences, Faculty of Arts and Sciences, Çankaya University, 06530, Ankara, Turkey, Institute of Space Sciences, R 76900, MG-23 Magurele-Bucharest, P.O.BOX, Romania; Muslih S.I., Department of Physics, Al-Azhar University, Gaza, Palestine, International Center for Theoretical Physics, Trieste, Italy en_US
gdc.description.endpage 1464 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1457 en_US
gdc.description.volume 6 B en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W2085514064
gdc.identifier.wos WOS:000242326201087
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.11
gdc.opencitations.count 5
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 10
gdc.scopus.citedcount 10
gdc.wos.citedcount 10
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files