Identifying the Space Source Term Problem for a Generalization of the Fractional Diffusion Equation With Hyper-Bessel Operator
| dc.contributor.author | Le Nhat Huynh | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Nguyen Huu Can | |
| dc.contributor.author | Nguyen Hoang Luc | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2021-01-07T11:42:52Z | |
| dc.date.accessioned | 2025-09-18T12:05:31Z | |
| dc.date.available | 2021-01-07T11:42:52Z | |
| dc.date.available | 2025-09-18T12:05:31Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | In this paper, we consider an inverse problem of identifying the source term for a generalization of the time-fractional diffusion equation, where regularized hyper-Bessel operator is used instead of the time derivative. First, we investigate the existence of our source term; the conditional stability for the inverse source problem is also investigated. Then, we show that the backward problem is ill-posed; the fractional Landweber method and the fractional Tikhonov method are used to deal with this inverse problem, and the regularized solution is also obtained. We present convergence rates for the regularized solution to the exact solution by using an a priori regularization parameter choice rule and an a posteriori parameter choice rule. Finally, we present a numerical example to illustrate the proposed method. | en_US |
| dc.description.publishedMonth | 6 | |
| dc.identifier.citation | Luc, Nguyen Hoang...et al. (2020). "Identifying the space source term problem for a generalization of the fractional diffusion equation with hyper-Bessel operator", Advances in Difference Equations, Vol. 2020, No. 1. | en_US |
| dc.identifier.doi | 10.1186/s13662-020-02712-y | |
| dc.identifier.issn | 1687-1847 | |
| dc.identifier.scopus | 2-s2.0-85085974131 | |
| dc.identifier.uri | https://doi.org/10.1186/s13662-020-02712-y | |
| dc.identifier.uri | https://hdl.handle.net/123456789/10648 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Source Term | en_US |
| dc.subject | Time-Fractional Diffusion Equation | en_US |
| dc.subject | Ill-Posed Problem | en_US |
| dc.subject | Hyper-Bessel Operator | en_US |
| dc.title | Identifying the Space Source Term Problem for a Generalization of the Fractional Diffusion Equation With Hyper-Bessel Operator | en_US |
| dc.title | Identifying the space source term problem for a generalization of the fractional diffusion equation with hyper-Bessel operator | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 57207580205 | |
| gdc.author.scopusid | 57204918973 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 57418971700 | |
| gdc.author.wosid | Nguyen, Can/R-4820-2018 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Nguyen Hoang Luc] Thu Dau Mot Univ, Div Appl Math, Phu Hoa, Binh Duong Prov, Vietnam; [Le Nhat Huynh] Univ Sci, Dept Math & Comp Sci, Ho Chi Minh City, Vietnam; [Le Nhat Huynh] Vietnam Natl Univ, Ho Chi Minh City, Vietnam; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Nguyen Huu Can] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.volume | 2020 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3033126230 | |
| gdc.identifier.wos | WOS:000538080600001 | |
| gdc.openalex.fwci | 0.60515968 | |
| gdc.openalex.normalizedpercentile | 0.77 | |
| gdc.opencitations.count | 12 | |
| gdc.plumx.crossrefcites | 5 | |
| gdc.plumx.scopuscites | 23 | |
| gdc.scopus.citedcount | 23 | |
| gdc.wos.citedcount | 19 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |