Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

An Efficient Numerical Scheme Based on the Shifted Orthonormal Jacobi Polynomials for Solving Fractional Optimal Control Problems

dc.contributor.author Bhrawy, Ali H.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Ezz-Eldien, Samer S.
dc.contributor.author Hafez, Ramy M.
dc.contributor.author Doha, Eid H.
dc.date.accessioned 2017-03-17T10:47:34Z
dc.date.accessioned 2025-09-18T12:05:21Z
dc.date.available 2017-03-17T10:47:34Z
dc.date.available 2025-09-18T12:05:21Z
dc.date.issued 2015
dc.description Doha, Eid/0000-0002-7781-6871; Hafez, Ramy/0000-0001-9533-3171 en_US
dc.description.abstract In this article, we introduce a numerical technique for solving a general form of the fractional optimal control problem. Fractional derivatives are described in the Caputo sense. Using the properties of the shifted Jacobi orthonormal polynomials together with the operational matrix of fractional integrals (described in the Riemann-Liouville sense), we transform the fractional optimal control problem into an equivalent variational problem that can be reduced to a problem consisting of solving a system of algebraic equations by using the Legendre-Gauss quadrature formula with the Rayleigh-Ritz method. This system can be solved by any standard iteration method. For confirming the efficiency and accuracy of the proposed scheme, we introduce some numerical examples with their approximate solutions and compare our results with those achieved using other methods. en_US
dc.description.sponsorship Deanship of Scientific Research DSR, King Abdulaziz University, Jeddah; DSR en_US
dc.description.sponsorship This article was funded by the Deanship of Scientific Research DSR, King Abdulaziz University, Jeddah. The authors, therefore, acknowledge with thanks DSR technical and financial support. en_US
dc.identifier.citation Doha, E.H...et al. (2015). An efficient numerical scheme based on the shifted orthonormal Jacobi polynomials for solving fractional optimal control problems. Advance in Difference Equations. http://dx.doi.org/10.1186/s13662-014-0344-z en_US
dc.identifier.doi 10.1186/s13662-014-0344-z
dc.identifier.issn 1687-1847
dc.identifier.scopus 2-s2.0-84922042327
dc.identifier.uri https://doi.org/10.1186/s13662-014-0344-z
dc.identifier.uri https://hdl.handle.net/20.500.12416/10577
dc.language.iso en en_US
dc.publisher Springeropen en_US
dc.relation.ispartof Advances in Difference Equations
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fractional Optimal Control Problem en_US
dc.subject Jacobi Polynomials en_US
dc.subject Operational Matrix en_US
dc.subject Gauss Quadrature en_US
dc.subject Rayleigh-Ritz Method en_US
dc.title An Efficient Numerical Scheme Based on the Shifted Orthonormal Jacobi Polynomials for Solving Fractional Optimal Control Problems en_US
dc.title An efficient numerical scheme based on the shifted orthonormal Jacobi polynomials for solving fractional optimal control problems tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Hafez, Ramy/0000-0001-9533-3171
gdc.author.id Doha, Eid/0000-0002-7781-6871
gdc.author.scopusid 6602467804
gdc.author.scopusid 14319102000
gdc.author.scopusid 7005872966
gdc.author.scopusid 38861466200
gdc.author.scopusid 36859215200
gdc.author.wosid Hafez, Ramy/Aaa-5936-2020
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Doha, Eid/L-1723-2019
gdc.author.wosid Bhrawy, Ali/D-4745-2012
gdc.author.wosid Ezz-Eldien, Samer/Agk-8059-2022
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Doha, Eid H.] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt; [Bhrawy, Ali H.] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia; [Bhrawy, Ali H.] Beni Suef Univ, Dept Math, Fac Sci, Bani Suwayf, Egypt; [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, TR-06810 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele 76900, Romania; [Ezz-Eldien, Samer S.; Hafez, Ramy M.] Modern Acad, Inst Informat Technol, Dept Basic Sci, Cairo, Egypt en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.volume 2015
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2132158390
gdc.identifier.wos WOS:000351302600005
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 24.0
gdc.oaire.influence 5.214987E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Orthogonal polynomials
gdc.oaire.keywords Theory and Applications of Fractional Differential Equations
gdc.oaire.keywords Mathematical analysis
gdc.oaire.keywords Quantum mechanics
gdc.oaire.keywords Convergence Analysis of Iterative Methods for Nonlinear Equations
gdc.oaire.keywords Differential equation
gdc.oaire.keywords FOS: Mathematics
gdc.oaire.keywords Anomalous Diffusion Modeling and Analysis
gdc.oaire.keywords Scheme (mathematics)
gdc.oaire.keywords Numerical Analysis
gdc.oaire.keywords Algebra and Number Theory
gdc.oaire.keywords Applied Mathematics
gdc.oaire.keywords Physics
gdc.oaire.keywords Classical orthogonal polynomials
gdc.oaire.keywords Orthonormal basis
gdc.oaire.keywords Partial differential equation
gdc.oaire.keywords Applied mathematics
gdc.oaire.keywords Fractional Derivatives
gdc.oaire.keywords Modeling and Simulation
gdc.oaire.keywords Physical Sciences
gdc.oaire.keywords Jacobi polynomials
gdc.oaire.keywords Fractional Calculus
gdc.oaire.keywords Analysis
gdc.oaire.keywords Mathematics
gdc.oaire.keywords Ordinary differential equation
gdc.oaire.keywords Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
gdc.oaire.keywords Gauss quadrature
gdc.oaire.keywords Optimality conditions for problems involving ordinary differential equations
gdc.oaire.keywords Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
gdc.oaire.keywords operational matrix
gdc.oaire.keywords Discrete approximations in optimal control
gdc.oaire.keywords fractional optimal control problem
gdc.oaire.keywords Rayleigh-Ritz method
gdc.oaire.popularity 1.4202772E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0103 physical sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 8.60286788
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 41
gdc.plumx.crossrefcites 19
gdc.plumx.facebookshareslikecount 48
gdc.plumx.mendeley 13
gdc.plumx.scopuscites 64
gdc.publishedmonth 1
gdc.scopus.citedcount 64
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 59
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files