Parallelization of Sparsity-Driven Change Detection Method
dc.authorid | Nar, Fatih/0000-0002-3003-8136 | |
dc.authorscopusid | 55293260800 | |
dc.authorscopusid | 25651951700 | |
dc.authorscopusid | 9269153000 | |
dc.authorwosid | Özgür, Atilla/Aad-6546-2019 | |
dc.authorwosid | Saran, Nurdan/Izq-0124-2023 | |
dc.authorwosid | Nar, Fatih/B-8130-2013 | |
dc.contributor.author | Nar, Fatih | |
dc.contributor.author | Saran, Ayse Nurdan | |
dc.contributor.author | Nar, Fatih | |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2025-05-13T13:41:28Z | |
dc.date.available | 2025-05-13T13:41:28Z | |
dc.date.issued | 2017 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Ozgur, Atilla] Baskent Univ, Elekt & Elekt Muhendisligi, Ankara, Turkey; [Saran, Ayse Nurdan] Cankaya Univ, Bilgisayar Muhendisligi, Ankara, Turkey; [Nar, Fatih] Konya Gida Tarim Univ, Bilgisayar Muhendisligi, Konya, Turkey | en_US |
dc.description | Nar, Fatih/0000-0002-3003-8136 | en_US |
dc.description.abstract | In this study, Sparsity-driven Change Detection (SDCD) method, which has been proposed for detecting changes in multitemporal synthetic aperture radar (SAR) images, is parallelized to reduce the execution time. Parallelization of the SDCD is realized using OpenMP on CPU and CUDA on GPU. Execution speed of the parallelized SDCD is shown on real-world SAR images. Our experimental results show that the computation time of the parallel implementation brings significant speed-ups. | en_US |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
dc.identifier.doi | 10.1109/SIU.2017.7960455 | |
dc.identifier.isbn | 9781509064946 | |
dc.identifier.issn | 2165-0608 | |
dc.identifier.scopus | 2-s2.0-85026301111 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.uri | https://doi.org/10.1109/SIU.2017.7960455 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12416/9962 | |
dc.identifier.wos | WOS:000413813100318 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | tr | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 25th Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2017 -- Antalya, TURKEY | en_US |
dc.relation.ispartofseries | Signal Processing and Communications Applications Conference | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 0 | |
dc.subject | Change Detection | en_US |
dc.subject | Synthetic Aperture Radar | en_US |
dc.subject | Total Variation | en_US |
dc.subject | Parallelization | en_US |
dc.subject | Openmp | en_US |
dc.subject | Gpu | en_US |
dc.subject | Cuda | en_US |
dc.title | Parallelization of Sparsity-Driven Change Detection Method | en_US |
dc.type | Conference Object | en_US |
dc.wos.citedbyCount | 0 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 4cf48a50-3268-44f4-9f6d-df441e0e2cfe | |
relation.isAuthorOfPublication.latestForDiscovery | 4cf48a50-3268-44f4-9f6d-df441e0e2cfe | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |