Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Low Signature UAVs: Radar Cross Section Analysis, Simulation, and Measurement in X-Band

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Springer London Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

The increasing prevalence of unmanned aerial vehicles (UAVs) is driving the development of radar systems capable of detecting them. This hampers the deployment of UAVs in military operations. While radar cross section reduction (RCSR) can be a valuable solution, the research on this subject is inadequate. This paper presents an RCSR approach adopting a shaping technique for UAVs, demonstrating the proposed approach's efficacy through simulations and actual experimental measurements performed in X-Band on a four-legged UAV model. Using electromagnetic computational instruments, the shaping is applied to the designed UAV model with parameter-based simulations, the simulated radar cross section (RCS) values are derived, and the comparative analysis of these instruments is conducted. Experimental measurements are performed in laboratory conditions using a vector network analyzer. Actual measurement results are validated by simulative findings with the examination of the influence of frequency, polarization, and aspect angle on RCS. The demonstrated measuring approach allows cost-effective and easily applicable research on RCS in X-Band, a commonly utilized frequency range in military. An average RCSR of 10 dBsm has been accomplished with the presented shaping approach.

Description

Keywords

Radar Cross Section, RCS Reduction, Shaping, Unmanned Aerial Vehicle, X-Band

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q3

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Volume

19

Issue

7

Start Page

End Page

PlumX Metrics
Citations

Scopus : 0

Captures

Mendeley Readers : 2

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo