Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Adaptive Estimation of Autoregressive Models Under Long-Tailed Symmetric Distribution

dc.contributor.author Yentür, B.
dc.contributor.author Bayrak, Ö.T.
dc.contributor.author Akkaya, A.D.
dc.contributor.authorID 56416 tr_TR
dc.contributor.other 09.01. Ortak Dersler Bölümü
dc.contributor.other 09. Rektörlük
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2020-05-08T11:41:56Z
dc.date.accessioned 2025-09-18T16:06:56Z
dc.date.available 2020-05-08T11:41:56Z
dc.date.available 2025-09-18T16:06:56Z
dc.date.issued 2019
dc.description Universidade da Beira Interior (UBI); Universidade Nova de Lisboa en_US
dc.description.abstract In this paper, we consider the autoregressive models where the error term is non-normal; specifically belongs to a long-tailed symmetric distribution family since it is more relevant in practice than the normal distribution. It is known that least squares (LS) estimators are neither efficient nor robust under non-normality and maximum likelihood (ML) estimators cannot be obtained explicitly and require a numerical solution which might be problematic. In recent years, modified maximum likelihood (MML) estimation is developed to overcome these difficulties. However, this method requires that the shape parameter is known which is not realistic in machine data processing. Therefore, we use adaptive modified maximum likelihood (AMML) technique which combines MML with Huber’s estimation procedure so that the shape parameter is also estimated. After derivation of the AMML estimators, their efficiency and robustness properties are discussed through a simulation study and compared with MML and LS estimators. © 2019 Association for Computing Machinery. en_US
dc.description.publishedMonth 7
dc.identifier.citation Yentür, B.; Bayrak, Ö.T.; Akkaya, A.D. (2019). "Adaptive Estimation of Autoregressive Models Under Long-Tailed Symmetric Distribution", Acm International Conference Proceeding Series, pp. 68-72. en_US
dc.identifier.doi 10.1145/3343485.3343490
dc.identifier.isbn 9781450371681
dc.identifier.scopus 2-s2.0-85072799945
dc.identifier.uri https://doi.org/10.1145/3343485.3343490
dc.identifier.uri https://hdl.handle.net/20.500.12416/14635
dc.language.iso en en_US
dc.publisher Association for Computing Machinery en_US
dc.relation.ispartof ACM International Conference Proceeding Series -- 2nd International Conference on Mathematics and Statistics, ICoMS 2019 -- 8 July 2019 through 10 July 2019 -- Prague -- 151596 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Autocorrelation en_US
dc.subject Modified Maximum Likelihood en_US
dc.subject Regression en_US
dc.subject Robust en_US
dc.title Adaptive Estimation of Autoregressive Models Under Long-Tailed Symmetric Distribution en_US
dc.title Adaptive Estimation of Autoregressive Models Under Long-Tailed Symmetric Distribution tr_TR
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Bayrak, Özlem
gdc.author.scopusid 57211147681
gdc.author.scopusid 34970726800
gdc.author.scopusid 6603740998
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp Yentür B., Department of Statistics, Middle East Technical University, Ankara, Turkey; Bayrak Ö.T., Dept. of Inter-Curricular Courses, Cankaya University, Ankara, Turkey; Akkaya A.D., Department of Statistics, Middle East Technical University, Ankara, Turkey en_US
gdc.description.endpage 72 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.startpage 68 en_US
gdc.identifier.openalex W2972478726
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.12
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
relation.isAuthorOfPublication 2588a5a9-5f4a-4469-8a03-b06b1692d468
relation.isAuthorOfPublication.latestForDiscovery 2588a5a9-5f4a-4469-8a03-b06b1692d468
relation.isOrgUnitOfPublication c26f9572-660d-46b5-a627-8e3068321c89
relation.isOrgUnitOfPublication 79403971-5ab2-4efd-ac9e-f03745af3705
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery c26f9572-660d-46b5-a627-8e3068321c89

Files