Adaptive Estimation of Autoregressive Models Under Long-Tailed Symmetric Distribution
| dc.contributor.author | Yentür, B. | |
| dc.contributor.author | Bayrak, Ö.T. | |
| dc.contributor.author | Akkaya, A.D. | |
| dc.contributor.authorID | 56416 | tr_TR |
| dc.contributor.other | 09.01. Ortak Dersler Bölümü | |
| dc.contributor.other | 09. Rektörlük | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2020-05-08T11:41:56Z | |
| dc.date.accessioned | 2025-09-18T16:06:56Z | |
| dc.date.available | 2020-05-08T11:41:56Z | |
| dc.date.available | 2025-09-18T16:06:56Z | |
| dc.date.issued | 2019 | |
| dc.description | Universidade da Beira Interior (UBI); Universidade Nova de Lisboa | en_US |
| dc.description.abstract | In this paper, we consider the autoregressive models where the error term is non-normal; specifically belongs to a long-tailed symmetric distribution family since it is more relevant in practice than the normal distribution. It is known that least squares (LS) estimators are neither efficient nor robust under non-normality and maximum likelihood (ML) estimators cannot be obtained explicitly and require a numerical solution which might be problematic. In recent years, modified maximum likelihood (MML) estimation is developed to overcome these difficulties. However, this method requires that the shape parameter is known which is not realistic in machine data processing. Therefore, we use adaptive modified maximum likelihood (AMML) technique which combines MML with Huber’s estimation procedure so that the shape parameter is also estimated. After derivation of the AMML estimators, their efficiency and robustness properties are discussed through a simulation study and compared with MML and LS estimators. © 2019 Association for Computing Machinery. | en_US |
| dc.description.publishedMonth | 7 | |
| dc.identifier.citation | Yentür, B.; Bayrak, Ö.T.; Akkaya, A.D. (2019). "Adaptive Estimation of Autoregressive Models Under Long-Tailed Symmetric Distribution", Acm International Conference Proceeding Series, pp. 68-72. | en_US |
| dc.identifier.doi | 10.1145/3343485.3343490 | |
| dc.identifier.isbn | 9781450371681 | |
| dc.identifier.scopus | 2-s2.0-85072799945 | |
| dc.identifier.uri | https://doi.org/10.1145/3343485.3343490 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/14635 | |
| dc.language.iso | en | en_US |
| dc.publisher | Association for Computing Machinery | en_US |
| dc.relation.ispartof | ACM International Conference Proceeding Series -- 2nd International Conference on Mathematics and Statistics, ICoMS 2019 -- 8 July 2019 through 10 July 2019 -- Prague -- 151596 | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Autocorrelation | en_US |
| dc.subject | Modified Maximum Likelihood | en_US |
| dc.subject | Regression | en_US |
| dc.subject | Robust | en_US |
| dc.title | Adaptive Estimation of Autoregressive Models Under Long-Tailed Symmetric Distribution | en_US |
| dc.title | Adaptive Estimation of Autoregressive Models Under Long-Tailed Symmetric Distribution | tr_TR |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Bayrak, Özlem | |
| gdc.author.scopusid | 57211147681 | |
| gdc.author.scopusid | 34970726800 | |
| gdc.author.scopusid | 6603740998 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | Yentür B., Department of Statistics, Middle East Technical University, Ankara, Turkey; Bayrak Ö.T., Dept. of Inter-Curricular Courses, Cankaya University, Ankara, Turkey; Akkaya A.D., Department of Statistics, Middle East Technical University, Ankara, Turkey | en_US |
| gdc.description.endpage | 72 | en_US |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 68 | en_US |
| gdc.identifier.openalex | W2972478726 | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.12 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.scopus.citedcount | 0 | |
| relation.isAuthorOfPublication | 2588a5a9-5f4a-4469-8a03-b06b1692d468 | |
| relation.isAuthorOfPublication.latestForDiscovery | 2588a5a9-5f4a-4469-8a03-b06b1692d468 | |
| relation.isOrgUnitOfPublication | c26f9572-660d-46b5-a627-8e3068321c89 | |
| relation.isOrgUnitOfPublication | 79403971-5ab2-4efd-ac9e-f03745af3705 | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | c26f9572-660d-46b5-a627-8e3068321c89 |