Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

System of Fractional Differential Algebraic Equations With Applications

dc.contributor.author Baleanu, D.
dc.contributor.author Shiri, B.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2020-02-28T12:18:26Z
dc.date.accessioned 2025-09-18T16:08:34Z
dc.date.available 2020-02-28T12:18:26Z
dc.date.available 2025-09-18T16:08:34Z
dc.date.issued 2019
dc.description Shiri, Babak/0000-0003-2249-282X en_US
dc.description.abstract One of the important classes of coupled systems of algebraic, differential and fractional differential equations (CSADFDEs) is fractional differential algebraic equations (FDAEs). The main difference of such systems with other class of CSADFDEs is that their singularity remains constant in an interval. However, complete classifying and analyzing of these systems relay mainly to the concept of the index which we introduce in this paper. For a system of linear differential algebraic equations (DAEs) with constant coefficients, we observe that the solvability depends on the regularity of the corresponding pencils. However, we show that in general, similar properties of DAEs do not hold for FDAEs. In this paper, we introduce some practical applications of systems of FDAEs in physics such as a simple pendulum in a Newtonian fluid and electrical circuit containing a new practical element namely fractors. We obtain the index of introduced systems and discuss the solvability of these systems. We numerically solve the FDAEs of a pendulum in a fluid with three different fractional derivatives (Liouville-Caputo's definition, CaputoFabrizio's definition and with a definition with Mittag-Leffler kernel) and compare the effect of different fractional derivatives in this modeling. Finally, we solved some existing examples in research and showed the effectiveness and efficiency of the proposed numerical method. (C) 2019 Elsevier Ltd. All rights reserved. en_US
dc.description.publishedMonth 3
dc.identifier.citation Shiri, B.; Baleanu, D., "System of fractional differential algebraic equations with applications", Chaos Solitons & Fractals, Vol. 120, pp. 203-212, (2019). en_US
dc.identifier.doi 10.1016/j.chaos.2019.01.028
dc.identifier.issn 0960-0779
dc.identifier.issn 1873-2887
dc.identifier.scopus 2-s2.0-85061281519
dc.identifier.uri https://doi.org/10.1016/j.chaos.2019.01.028
dc.identifier.uri https://hdl.handle.net/20.500.12416/15104
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject System Of Fractional Differential Equations en_US
dc.subject A Simple Pendulum In Newtonian Fluid en_US
dc.subject Mittag-Leffler Function en_US
dc.subject Electrical Circuits Containing Fractors en_US
dc.subject The Index Of Fractional Differential Algebraic Equations en_US
dc.title System of Fractional Differential Algebraic Equations With Applications en_US
dc.title System of fractional differential algebraic equations with applications tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Shiri, Babak/0000-0003-2249-282X
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 55614612800
gdc.author.scopusid 7005872966
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Shiri, Babak/T-7172-2019
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Shiri, B.] Univ Tabriz, Fac Math Sci, Tabriz, Iran; [Baleanu, D.] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Magurele, Romania en_US
gdc.description.endpage 212 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 203 en_US
gdc.description.volume 120 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2911592480
gdc.identifier.wos WOS:000459131600021
gdc.openalex.fwci 10.33255347
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 99
gdc.plumx.crossrefcites 83
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 117
gdc.scopus.citedcount 117
gdc.wos.citedcount 103
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files