Existence and uniqueness results for Φ-Caputo implicit fractional pantograph differential equation with generalized anti-periodic boundary condition
| dc.contributor.author | Ahmed, Idris | |
| dc.contributor.author | Kumam, Poom | |
| dc.contributor.author | Abdeljawad, Thabet | |
| dc.contributor.author | Jarad, Fahd | |
| dc.contributor.author | Borisut, Piyachat | |
| dc.contributor.author | Demba, Musa Ahmed | |
| dc.contributor.author | Kumam, Wiyada | |
| dc.contributor.authorID | 234808 | tr_TR |
| dc.date.accessioned | 2022-04-21T13:48:01Z | |
| dc.date.available | 2022-04-21T13:48:01Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | The present paper describes the implicit fractional pantograph differential equation in the context of generalized fractional derivative and anti-periodic conditions. We formulated the Green’s function of the proposed problems. With the aid of a Green’s function, we obtain an analogous integral equation of the proposed problems and demonstrate the existence and uniqueness of solutions using the techniques of the Schaefer and Banach fixed point theorems. Besides, some special cases that show the proposed problems extend the current ones in the literature are presented. Finally, two examples were given as an application to illustrate the results obtained. © 2020, The Author(s). | en_US |
| dc.description.publishedMonth | 12 | |
| dc.identifier.citation | Ahmed, Idris...et al. (2020). "Existence and uniqueness results for Φ-Caputo implicit fractional pantograph differential equation with generalized anti-periodic boundary condition", Advances in Difference Equations, Vol. 2020, No. 1. | en_US |
| dc.identifier.doi | 10.1186/s13662-020-03008-x | |
| dc.identifier.issn | 1687-1839 | |
| dc.identifier.issn | 1687-1847 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/5416 | |
| dc.language.iso | en | en_US |
| dc.relation.ispartof | Advances in Difference Equations | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Anti-Periodic Condition | en_US |
| dc.subject | Pantograph Differential Equation | en_US |
| dc.subject | Φ-Caputo Fractional Derivative | en_US |
| dc.title | Existence and uniqueness results for Φ-Caputo implicit fractional pantograph differential equation with generalized anti-periodic boundary condition | tr_TR |
| dc.title | Existence and Uniqueness Results for Φ-Caputo Implicit Fractional Pantograph Differential Equation With Generalized Anti-Periodic Boundary Condition | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Abdeljawad, Thabet | |
| gdc.author.institutional | Jarad, Fahd | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.description.department | Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.volume | 2020 | en_US |
| gdc.identifier.openalex | W3092337833 | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 6.0 | |
| gdc.oaire.influence | 3.042561E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Evolutionary biology | |
| gdc.oaire.keywords | Pantograph differential equation | |
| gdc.oaire.keywords | Theory and Applications of Fractional Differential Equations | |
| gdc.oaire.keywords | Mathematical analysis | |
| gdc.oaire.keywords | Context (archaeology) | |
| gdc.oaire.keywords | Differential equation | |
| gdc.oaire.keywords | Numerical Methods for Singularly Perturbed Problems | |
| gdc.oaire.keywords | Φ-Caputo fractional derivative | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Fixed-point theorem | |
| gdc.oaire.keywords | Boundary value problem | |
| gdc.oaire.keywords | Biology | |
| gdc.oaire.keywords | Anomalous Diffusion Modeling and Analysis | |
| gdc.oaire.keywords | Numerical Analysis | |
| gdc.oaire.keywords | Banach space | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | Fractional calculus | |
| gdc.oaire.keywords | Paleontology | |
| gdc.oaire.keywords | Partial differential equation | |
| gdc.oaire.keywords | Applied mathematics | |
| gdc.oaire.keywords | Function (biology) | |
| gdc.oaire.keywords | Modeling and Simulation | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Anti-periodic condition | |
| gdc.oaire.keywords | Uniqueness | |
| gdc.oaire.keywords | Finite Difference Schemes | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Ordinary differential equation | |
| gdc.oaire.popularity | 8.280846E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.fwci | 0.2491834 | |
| gdc.openalex.normalizedpercentile | 0.63 | |
| gdc.opencitations.count | 8 | |
| gdc.plumx.crossrefcites | 6 | |
| gdc.plumx.mendeley | 6 | |
| gdc.plumx.scopuscites | 12 | |
| relation.isAuthorOfPublication | ab09a09b-0017-4ffe-a8fe-b9b0499b2c01 | |
| relation.isAuthorOfPublication | c818455d-5734-4abd-8d29-9383dae37406 | |
| relation.isAuthorOfPublication.latestForDiscovery | ab09a09b-0017-4ffe-a8fe-b9b0499b2c01 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |