Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

On Well-Posedness of the Sub-Diffusion Equation With Conformable Derivative Model

dc.contributor.author Tran Bao Ngoc
dc.contributor.author Baleanu, Dumitru
dc.contributor.author O'Regan, Donal
dc.contributor.author Nguyen Huy Tuan
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2022-11-30T08:41:01Z
dc.date.accessioned 2025-09-18T12:06:14Z
dc.date.available 2022-11-30T08:41:01Z
dc.date.available 2025-09-18T12:06:14Z
dc.date.issued 2020
dc.description Tran Bao, Ngoc/0000-0003-1600-5845; Nguyen Huy, Tuan/0000-0002-6962-1898 en_US
dc.description.abstract In this paper, we study an initial value problem for the time diffusion equation (C)partial derivative(beta)/partial derivative t(beta) u + Au = F, 0 < beta <= 1, on Omega x (0, T), where the time derivative is the conformable derivative. We study the existence and regularity of mild solutions in the following three cases with source term F: F = F (x, t), i.e., linear source term; F = F (u) is nonlinear, globally Lipchitz and uniformly bounded. The results in this case play important roles in numerical analysis. F = F (u) is nonlinear, locally Lipchitz and uniformly bounded. The analysis in this case can be widely applied to many problems such as - Time Ginzburg-Landau equations C partial derivative(beta)u/partial derivative t(beta)+ (-Delta)u = vertical bar u vertical bar(mu-1) u; - Time Burgers equations C partial derivative(beta)u/partial derivative t(beta)-( u center dot del) u + (- Delta)u = 0; etc. (C) 2020 Elsevier B.V. All rights reserved. en_US
dc.description.publishedMonth 10
dc.description.sponsorship Vietnam National Foundation for Science and Technology Development (NAFOSTED) [101.02-2019.09] en_US
dc.description.sponsorship This research was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2019.09. en_US
dc.identifier.citation Tuan, Nguyen Huy...et al. (2020). "On well-posedness of the sub-diffusion equation with conformable derivative model", Communications in Nonlinear Science and Numerical Simulation, Vol. 89. en_US
dc.identifier.doi 10.1016/j.cnsns.2020.105332
dc.identifier.issn 1007-5704
dc.identifier.issn 1878-7274
dc.identifier.scopus 2-s2.0-85085173305
dc.identifier.uri https://doi.org/10.1016/j.cnsns.2020.105332
dc.identifier.uri https://hdl.handle.net/123456789/10850
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Conformable Derivative en_US
dc.subject Nonlocally Differential Operator en_US
dc.subject Diffusion Equation en_US
dc.subject Existence And Regularity en_US
dc.subject Ginzburg-Landau Equation en_US
dc.subject Burger Equation en_US
dc.title On Well-Posedness of the Sub-Diffusion Equation With Conformable Derivative Model en_US
dc.title On well-posedness of the sub-diffusion equation with conformable derivative model tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Tran Bao, Ngoc/0000-0003-1600-5845
gdc.author.id Nguyen Huy, Tuan/0000-0002-6962-1898
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 17347203900
gdc.author.scopusid 57201923753
gdc.author.scopusid 7005872966
gdc.author.scopusid 36049459000
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid O'Regan, Donal/I-3184-2015
gdc.author.wosid Nguyen, Tuan/C-6183-2015
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Nguyen Huy Tuan] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam; [Tran Bao Ngoc] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [O'Regan, Donal] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 89 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W3024047557
gdc.identifier.wos WOS:000571779500008
gdc.openalex.fwci 1.13912411
gdc.openalex.normalizedpercentile 0.86
gdc.opencitations.count 29
gdc.plumx.crossrefcites 30
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 35
gdc.scopus.citedcount 35
gdc.wos.citedcount 34
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files