Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

On Well-Posedness of the Sub-Diffusion Equation With Conformable Derivative Model

dc.contributor.author Tran Bao Ngoc
dc.contributor.author Baleanu, Dumitru
dc.contributor.author O'Regan, Donal
dc.contributor.author Nguyen Huy Tuan
dc.date.accessioned 2022-11-30T08:41:01Z
dc.date.accessioned 2025-09-18T12:06:14Z
dc.date.available 2022-11-30T08:41:01Z
dc.date.available 2025-09-18T12:06:14Z
dc.date.issued 2020
dc.description Tran Bao, Ngoc/0000-0003-1600-5845; Nguyen Huy, Tuan/0000-0002-6962-1898 en_US
dc.description.abstract In this paper, we study an initial value problem for the time diffusion equation (C)partial derivative(beta)/partial derivative t(beta) u + Au = F, 0 < beta <= 1, on Omega x (0, T), where the time derivative is the conformable derivative. We study the existence and regularity of mild solutions in the following three cases with source term F: F = F (x, t), i.e., linear source term; F = F (u) is nonlinear, globally Lipchitz and uniformly bounded. The results in this case play important roles in numerical analysis. F = F (u) is nonlinear, locally Lipchitz and uniformly bounded. The analysis in this case can be widely applied to many problems such as - Time Ginzburg-Landau equations C partial derivative(beta)u/partial derivative t(beta)+ (-Delta)u = vertical bar u vertical bar(mu-1) u; - Time Burgers equations C partial derivative(beta)u/partial derivative t(beta)-( u center dot del) u + (- Delta)u = 0; etc. (C) 2020 Elsevier B.V. All rights reserved. en_US
dc.description.sponsorship Vietnam National Foundation for Science and Technology Development (NAFOSTED) [101.02-2019.09] en_US
dc.description.sponsorship This research was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2019.09. en_US
dc.identifier.citation Tuan, Nguyen Huy...et al. (2020). "On well-posedness of the sub-diffusion equation with conformable derivative model", Communications in Nonlinear Science and Numerical Simulation, Vol. 89. en_US
dc.identifier.doi 10.1016/j.cnsns.2020.105332
dc.identifier.issn 1007-5704
dc.identifier.issn 1878-7274
dc.identifier.scopus 2-s2.0-85085173305
dc.identifier.uri https://doi.org/10.1016/j.cnsns.2020.105332
dc.identifier.uri https://hdl.handle.net/20.500.12416/10850
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Communications in Nonlinear Science and Numerical Simulation
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Conformable Derivative en_US
dc.subject Nonlocally Differential Operator en_US
dc.subject Diffusion Equation en_US
dc.subject Existence And Regularity en_US
dc.subject Ginzburg-Landau Equation en_US
dc.subject Burger Equation en_US
dc.title On Well-Posedness of the Sub-Diffusion Equation With Conformable Derivative Model en_US
dc.title On well-posedness of the sub-diffusion equation with conformable derivative model tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Tran Bao, Ngoc/0000-0003-1600-5845
gdc.author.id Nguyen Huy, Tuan/0000-0002-6962-1898
gdc.author.scopusid 17347203900
gdc.author.scopusid 57201923753
gdc.author.scopusid 7005872966
gdc.author.scopusid 36049459000
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid O'Regan, Donal/I-3184-2015
gdc.author.wosid Nguyen, Tuan/C-6183-2015
gdc.author.yokid 56389
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Nguyen Huy Tuan] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam; [Tran Bao Ngoc] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [O'Regan, Donal] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 105332
gdc.description.volume 89 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W3024047557
gdc.identifier.wos WOS:000571779500008
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 29.0
gdc.oaire.influence 4.181756E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Fractional derivatives and integrals
gdc.oaire.keywords Ginzburg-Landau equations
gdc.oaire.keywords Initial-boundary value problems for second-order parabolic equations
gdc.oaire.keywords Smoothness and regularity of solutions to PDEs
gdc.oaire.keywords existence and regularity
gdc.oaire.keywords conformable derivative
gdc.oaire.keywords Fractional partial differential equations
gdc.oaire.keywords nonlocally differential operator
gdc.oaire.keywords Burgers equation
gdc.oaire.popularity 2.3011962E-8
gdc.oaire.publicfunded true
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 1.13912411
gdc.openalex.normalizedpercentile 0.84
gdc.opencitations.count 29
gdc.plumx.crossrefcites 30
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 35
gdc.publishedmonth 10
gdc.scopus.citedcount 35
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 34
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files