On Well-Posedness of the Sub-Diffusion Equation With Conformable Derivative Model
| dc.contributor.author | Tran Bao Ngoc | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | O'Regan, Donal | |
| dc.contributor.author | Nguyen Huy Tuan | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2022-11-30T08:41:01Z | |
| dc.date.accessioned | 2025-09-18T12:06:14Z | |
| dc.date.available | 2022-11-30T08:41:01Z | |
| dc.date.available | 2025-09-18T12:06:14Z | |
| dc.date.issued | 2020 | |
| dc.description | Tran Bao, Ngoc/0000-0003-1600-5845; Nguyen Huy, Tuan/0000-0002-6962-1898 | en_US |
| dc.description.abstract | In this paper, we study an initial value problem for the time diffusion equation (C)partial derivative(beta)/partial derivative t(beta) u + Au = F, 0 < beta <= 1, on Omega x (0, T), where the time derivative is the conformable derivative. We study the existence and regularity of mild solutions in the following three cases with source term F: F = F (x, t), i.e., linear source term; F = F (u) is nonlinear, globally Lipchitz and uniformly bounded. The results in this case play important roles in numerical analysis. F = F (u) is nonlinear, locally Lipchitz and uniformly bounded. The analysis in this case can be widely applied to many problems such as - Time Ginzburg-Landau equations C partial derivative(beta)u/partial derivative t(beta)+ (-Delta)u = vertical bar u vertical bar(mu-1) u; - Time Burgers equations C partial derivative(beta)u/partial derivative t(beta)-( u center dot del) u + (- Delta)u = 0; etc. (C) 2020 Elsevier B.V. All rights reserved. | en_US |
| dc.description.publishedMonth | 10 | |
| dc.description.sponsorship | Vietnam National Foundation for Science and Technology Development (NAFOSTED) [101.02-2019.09] | en_US |
| dc.description.sponsorship | This research was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2019.09. | en_US |
| dc.identifier.citation | Tuan, Nguyen Huy...et al. (2020). "On well-posedness of the sub-diffusion equation with conformable derivative model", Communications in Nonlinear Science and Numerical Simulation, Vol. 89. | en_US |
| dc.identifier.doi | 10.1016/j.cnsns.2020.105332 | |
| dc.identifier.issn | 1007-5704 | |
| dc.identifier.issn | 1878-7274 | |
| dc.identifier.scopus | 2-s2.0-85085173305 | |
| dc.identifier.uri | https://doi.org/10.1016/j.cnsns.2020.105332 | |
| dc.identifier.uri | https://hdl.handle.net/123456789/10850 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Conformable Derivative | en_US |
| dc.subject | Nonlocally Differential Operator | en_US |
| dc.subject | Diffusion Equation | en_US |
| dc.subject | Existence And Regularity | en_US |
| dc.subject | Ginzburg-Landau Equation | en_US |
| dc.subject | Burger Equation | en_US |
| dc.title | On Well-Posedness of the Sub-Diffusion Equation With Conformable Derivative Model | en_US |
| dc.title | On well-posedness of the sub-diffusion equation with conformable derivative model | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Tran Bao, Ngoc/0000-0003-1600-5845 | |
| gdc.author.id | Nguyen Huy, Tuan/0000-0002-6962-1898 | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 17347203900 | |
| gdc.author.scopusid | 57201923753 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 36049459000 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | O'Regan, Donal/I-3184-2015 | |
| gdc.author.wosid | Nguyen, Tuan/C-6183-2015 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Nguyen Huy Tuan] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam; [Tran Bao Ngoc] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [O'Regan, Donal] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.volume | 89 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3024047557 | |
| gdc.identifier.wos | WOS:000571779500008 | |
| gdc.openalex.fwci | 1.13912411 | |
| gdc.openalex.normalizedpercentile | 0.86 | |
| gdc.opencitations.count | 29 | |
| gdc.plumx.crossrefcites | 30 | |
| gdc.plumx.mendeley | 3 | |
| gdc.plumx.scopuscites | 35 | |
| gdc.scopus.citedcount | 35 | |
| gdc.wos.citedcount | 34 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |