Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

On nonlinear fractional Klein-Gordon equation

dc.contributor.author Golmankhaneh, Alireza K.
dc.contributor.author Golmankhaneh, Ali K.
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2016-07-01T09:22:31Z
dc.date.available 2016-07-01T09:22:31Z
dc.date.issued 2011
dc.description.abstract Numerical methods are used to find exact solution for the nonlinear differential equations. In the last decades Iterative methods have been used for solving fractional differential equations. In this paper, the Homotopy perturbation method has been successively applied for finding approximate analytical solutions of the fractional nonlinear Klein-Cordon equation can be used as numerical algorithm. The behavior of solutions and the effects of different values of fractional order a are shown graphically. Some examples are given to show ability of the method for solving the fractional nonlinear equation en_US
dc.identifier.citation Golmankhaneh, A.K., Golmankhaneh, Ali K., Baleanu, D. (2011). On nonlinear fractional Klein-Gordon equation. Signal Processing, 91(3), 446-451. http://dx.doi.org/10.1016/j.sigpro.2010.04.016 en_US
dc.identifier.doi 10.1016/j.sigpro.2010.04.016
dc.identifier.issn 0165-1684
dc.identifier.uri https://hdl.handle.net/20.500.12416/1179
dc.language.iso en en_US
dc.publisher Elsevier Science Bv en_US
dc.relation.ispartof Signal Processing en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Caputo Fractional Derivative en_US
dc.subject Fractional Klein Gordon en_US
dc.subject Homotopy Perturbation Method en_US
dc.subject Numerical Algorithm en_US
dc.subject Iteration Method en_US
dc.title On nonlinear fractional Klein-Gordon equation tr_TR
dc.title On Nonlinear Fractional Klein-Gordon Equation en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.bip.impulseclass C4
gdc.bip.influenceclass C3
gdc.bip.popularityclass C3
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü en_US
gdc.description.endpage 451 en_US
gdc.description.issue 3 en_US
gdc.description.startpage 446 en_US
gdc.description.volume 91 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W2064354079
gdc.oaire.diamondjournal false
gdc.oaire.impulse 19.0
gdc.oaire.influence 1.1454439E-8
gdc.oaire.isgreen false
gdc.oaire.keywords Signal theory (characterization, reconstruction, filtering, etc.)
gdc.oaire.keywords Caputo fractional derivative
gdc.oaire.keywords fractional Klein Gordon
gdc.oaire.keywords iteration method
gdc.oaire.keywords Fractional ordinary differential equations
gdc.oaire.keywords Numerical methods for ordinary differential equations
gdc.oaire.keywords numerical algorithm
gdc.oaire.keywords homotopy perturbation method
gdc.oaire.popularity 3.927864E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 2.16593718
gdc.openalex.normalizedpercentile 0.86
gdc.opencitations.count 110
gdc.plumx.crossrefcites 51
gdc.plumx.facebookshareslikecount 1
gdc.plumx.mendeley 25
gdc.plumx.scopuscites 136
gdc.publishedmonth 3
gdc.virtual.author Baleanu, Dumitru
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: