Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On the motion of a heavy bead sliding on a rotating wire - Fractional treatment

Loading...
Thumbnail Image

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

In this work, we consider the motion of a heavy particle sliding on a rotating wire. The first step carried for this model is writing the classical and fractional Lagrangian. Secondly, the fractional Hamilton's equations (FHEs) of motion of the system is derived. The fractional equations are formulated in the sense of Caputo. Thirdly, numerical simulations of the FHEs within the fractional operators are presented and discussed for some fractional derivative orders. Numerical results are based on a discretization scheme using the Euler convolution quadrature rule for the discretization of the convolution integral. Finally, simulation results verify that, taking into account the fractional calculus provides more flexible models demonstrating new aspects of the real world phenomena.

Description

Asad, Jihad/0000-0002-6862-1634

Keywords

Motion Of A Heavy Bead On A Rotating Wire, Euler-Lagrange Equation, Fractional Derivative, Grunwald-Letnikov Approximation

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Baleanu, Dumitru; Asad, Jihad H.; Alipour, Mohsen (2018), On the motion of a heavy bead sliding on a rotating wire - Fractional treatment, Results in Physics, 11, 579-583.

WoS Q

Q1

Scopus Q

Q1

Source

Volume

11

Issue

Start Page

579

End Page

583