Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On the motion of a heavy bead sliding on a rotating wire - Fractional treatment

dc.authorid Asad, Jihad/0000-0002-6862-1634
dc.authorscopusid 7005872966
dc.authorscopusid 8898843900
dc.authorscopusid 57220772685
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Alipour, Mohsen/Abg-9213-2021
dc.authorwosid Asad, Jihad/F-5680-2011
dc.authorwosid Asad, Jihad/P-2975-2016
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Asad, Jihad H.
dc.contributor.author Alipour, Mohsen
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2019-12-19T13:51:53Z
dc.date.available 2019-12-19T13:51:53Z
dc.date.issued 2018
dc.department Çankaya University en_US
dc.department-temp [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, POB MG 23, Bucharest 76900, Romania; [Asad, Jihad H.] Palestine Tech Univ, Coll Arts & Sci, Dept Phys, POB 7, Tulkarm, Palestine; [Alipour, Mohsen] Babol Univ Technol, Fac Basic Sci, Dept Math, POB 47148-71167, Babol Sar, Iran en_US
dc.description Asad, Jihad/0000-0002-6862-1634 en_US
dc.description.abstract In this work, we consider the motion of a heavy particle sliding on a rotating wire. The first step carried for this model is writing the classical and fractional Lagrangian. Secondly, the fractional Hamilton's equations (FHEs) of motion of the system is derived. The fractional equations are formulated in the sense of Caputo. Thirdly, numerical simulations of the FHEs within the fractional operators are presented and discussed for some fractional derivative orders. Numerical results are based on a discretization scheme using the Euler convolution quadrature rule for the discretization of the convolution integral. Finally, simulation results verify that, taking into account the fractional calculus provides more flexible models demonstrating new aspects of the real world phenomena. en_US
dc.description.publishedMonth 12
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Baleanu, Dumitru; Asad, Jihad H.; Alipour, Mohsen (2018), On the motion of a heavy bead sliding on a rotating wire - Fractional treatment, Results in Physics, 11, 579-583. en_US
dc.identifier.doi 10.1016/j.rinp.2018.09.007
dc.identifier.endpage 583 en_US
dc.identifier.issn 2211-3797
dc.identifier.scopus 2-s2.0-85054597856
dc.identifier.scopusquality Q1
dc.identifier.startpage 579 en_US
dc.identifier.uri https://doi.org/10.1016/j.rinp.2018.09.007
dc.identifier.volume 11 en_US
dc.identifier.wos WOS:000454026000087
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 7
dc.subject Motion Of A Heavy Bead On A Rotating Wire en_US
dc.subject Euler-Lagrange Equation en_US
dc.subject Fractional Derivative en_US
dc.subject Grunwald-Letnikov Approximation en_US
dc.title On the motion of a heavy bead sliding on a rotating wire - Fractional treatment tr_TR
dc.title On the Motion of a Heavy Bead Sliding on a Rotating Wire - Fractional Treatment en_US
dc.type Article en_US
dc.wos.citedbyCount 7
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu, Dumitru.pdf
Size:
759.98 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: