Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Fast Binary Logistic Regression

dc.contributor.author Saran, Nurdan Ayse
dc.contributor.author Nar, Fatih
dc.contributor.other 06.01. Bilgisayar Mühendisliği
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2025-05-13T11:57:06Z
dc.date.accessioned 2025-09-18T12:08:44Z
dc.date.available 2025-05-13T11:57:06Z
dc.date.available 2025-09-18T12:08:44Z
dc.date.issued 2025
dc.description Nar, Fatih/0000-0002-3003-8136 en_US
dc.description.abstract This study presents a novel numerical approach that improves the training efficiency of binary logistic regression, a popular statistical model in the machine learning community. Our method achieves training times an order of magnitude faster than traditional logistic regression by employing a novel Soft-Plus approximation, which enables reformulation of logistic regression parameter estimation into matrix-vector form. We also adopt the L-f-norm penalty, which allows using fractional norms, including the L-2-norm, L-1-norm, and L-0-norm, to regularize the model parameters. We put L-f-norm formulation in matrix-vector form, providing flexibility to include or exclude penalization of the intercept term when applying regularization. Furthermore, to address the common problem of collinear features, we apply singular value decomposition (SVD), resulting in a low-rank representation commonly used to reduce computational complexity while preserving essential features and mitigating noise. Moreover, our approach incorporates a randomized SVD alongside a newly developed SVD with row reduction (SVD-RR) method, which aims to manage datasets with many rows and features efficiently. This computational efficiency is crucial in developing a generalized model that requires repeated training over various parameters to balance bias and variance. We also demonstrate the effectiveness of our fast binary logistic regression (FBLR) method on various datasets from the OpenML repository in addition to synthetic datasets. en_US
dc.identifier.doi 10.7717/peerj-cs.2579
dc.identifier.issn 2376-5992
dc.identifier.scopus 2-s2.0-85219135186
dc.identifier.uri https://doi.org/10.7717/peerj-cs.2579
dc.identifier.uri https://hdl.handle.net/123456789/11206
dc.language.iso en en_US
dc.publisher Peerj inc en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Logistic Regression en_US
dc.subject Low-Rank en_US
dc.subject Singular Value Decomposition en_US
dc.subject L-F-Norm Regularization en_US
dc.title Fast Binary Logistic Regression en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Nar, Fatih/0000-0002-3003-8136
gdc.author.institutional Saran, Ayşe Nurdan
gdc.author.institutional Nar, Fatih
gdc.author.scopusid 25651951700
gdc.author.scopusid 9269153000
gdc.author.wosid Nar, Fatih/B-8130-2013
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Saran, Nurdan Ayse] Cankaya Univ, Dept Comp Engn, Ankara, Turkiye; [Nar, Fatih] Ankara Yildirim Beyazit Univ, Dept Comp Engn, Ankara, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 11 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4407000700
gdc.identifier.pmid 40062264
gdc.identifier.wos WOS:001479745800001
gdc.openalex.fwci 16.36703401
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 0
gdc.plumx.mendeley 174
gdc.plumx.newscount 1
gdc.plumx.scopuscites 5
gdc.scopus.citedcount 5
gdc.wos.citedcount 1
relation.isAuthorOfPublication 5de9997f-6ac0-489d-9c97-5e674bd1b9c7
relation.isAuthorOfPublication 4cf48a50-3268-44f4-9f6d-df441e0e2cfe
relation.isAuthorOfPublication.latestForDiscovery 5de9997f-6ac0-489d-9c97-5e674bd1b9c7
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files