Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Hyper-heuristics: A survey and taxonomy

Loading...
Thumbnail Image

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Yazılım Mühendisliği
Bölümümüzün içinde bulunduğumuz bilişim çağının en önemli unsuru olan yazılım sektörüne etkin katkıda bulunabilecek mühendisler yetiştirmeyi hedeflemektedir.

Journal Issue

Events

Abstract

Hyper-heuristics are search techniques for selecting, generating, and sequencing (meta)-heuristics to solve challenging optimization problems. They differ from traditional (meta)-heuristics methods, which primarily employ search space-based optimization strategies. Due to the remarkable performance of hyper-heuristics in multi-objective and machine learning-based optimization, there has been an increasing interest in this field. With a fresh perspective, our work extends the current taxonomy and presents an overview of the most significant hyper-heuristic studies of the last two decades. Four categories under which we analyze hyperheuristics are selection hyper-heuristics (including machine learning techniques), low-level heuristics, target optimization problems, and parallel hyper-heuristics. Future research prospects, trends, and prospective fields of study are also explored.

Description

Kucukyilmaz, Tayfun/0000-0002-2551-4740

Keywords

Hyper -Heuristics, Metaheuristics, Survey, Optimization

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Dökeroğlu, Tansel; Küçükyılmaz, Tayfun; Talbi, El-Ghazali (2024). "Hyper-heuristics: A survey and taxonomy", Computers and Industrial Engineering, Vol. 187.

WoS Q

Q1

Scopus Q

Q1

Source

Volume

187

Issue

Start Page

End Page