Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Hyper-heuristics: A survey and taxonomy

dc.contributor.authorDökeroğlu, Tansel
dc.contributor.authorKüçükyılmaz, Tayfun
dc.contributor.authorTalbi, El-Ghazali
dc.contributor.authorID234173tr_TR
dc.date.accessioned2024-06-05T10:59:46Z
dc.date.available2024-06-05T10:59:46Z
dc.date.issued2024
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Yazılım Mühendisliği Bölümüen_US
dc.description.abstractHyper-heuristics are search techniques for selecting, generating, and sequencing (meta)-heuristics to solve challenging optimization problems. They differ from traditional (meta)-heuristics methods, which primarily employ search space-based optimization strategies. Due to the remarkable performance of hyper-heuristics in multi-objective and machine learning-based optimization, there has been an increasing interest in this field. With a fresh perspective, our work extends the current taxonomy and presents an overview of the most significant hyper-heuristic studies of the last two decades. Four categories under which we analyze hyper-heuristics are selection hyper-heuristics (including machine learning techniques), low-level heuristics, target optimization problems, and parallel hyper-heuristics. Future research prospects, trends, and prospective fields of study are also explored.en_US
dc.description.publishedMonth1
dc.identifier.citationDökeroğlu, Tansel; Küçükyılmaz, Tayfun; Talbi, El-Ghazali (2024). "Hyper-heuristics: A survey and taxonomy", Computers and Industrial Engineering, Vol. 187.en_US
dc.identifier.doi10.1016/j.cie.2023.109815
dc.identifier.issn0360-8352
dc.identifier.urihttp://hdl.handle.net/20.500.12416/8472
dc.identifier.volume187en_US
dc.language.isoenen_US
dc.relation.ispartofComputers and Industrial Engineeringen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHyper-Heuristicsen_US
dc.subjectMetaheuristicsen_US
dc.subjectOptimizationen_US
dc.subjectSurveyen_US
dc.titleHyper-heuristics: A survey and taxonomytr_TR
dc.titleHyper-Heuristics: a Survey and Taxonomyen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
2.29 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: