Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Hyper-heuristics: A survey and taxonomy

dc.authorid Kucukyilmaz, Tayfun/0000-0002-2551-4740
dc.authorscopusid 55569137100
dc.authorscopusid 15073659600
dc.authorscopusid 6701668267
dc.authorwosid Talbi, El-Ghazali/Aao-7541-2020
dc.authorwosid Dökeroğlu, Tansel/Aaw-7857-2020
dc.contributor.author Dokeroglu, Tansel
dc.contributor.author Dökeroğlu, Tansel
dc.contributor.author Kucukyilmaz, Tayfun
dc.contributor.author Talbi, El-Ghazali
dc.contributor.authorID 234173 tr_TR
dc.contributor.other Yazılım Mühendisliği
dc.date.accessioned 2024-06-05T10:59:46Z
dc.date.available 2024-06-05T10:59:46Z
dc.date.issued 2024
dc.department Çankaya University en_US
dc.department-temp [Dokeroglu, Tansel] Cankaya Univ, Software Engn Dept, Ankara, Turkiye; [Kucukyilmaz, Tayfun] Erasmus Univ, Dept Technol & Operat Management, Rotterdam, Netherlands; [Talbi, El-Ghazali] Univ Lille, Ctr Rech Informat Signal & Automat Lille CRIStAL, UMR 9189, CNRS, F-59000 Lille, France en_US
dc.description Kucukyilmaz, Tayfun/0000-0002-2551-4740 en_US
dc.description.abstract Hyper-heuristics are search techniques for selecting, generating, and sequencing (meta)-heuristics to solve challenging optimization problems. They differ from traditional (meta)-heuristics methods, which primarily employ search space-based optimization strategies. Due to the remarkable performance of hyper-heuristics in multi-objective and machine learning-based optimization, there has been an increasing interest in this field. With a fresh perspective, our work extends the current taxonomy and presents an overview of the most significant hyper-heuristic studies of the last two decades. Four categories under which we analyze hyperheuristics are selection hyper-heuristics (including machine learning techniques), low-level heuristics, target optimization problems, and parallel hyper-heuristics. Future research prospects, trends, and prospective fields of study are also explored. en_US
dc.description.publishedMonth 1
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Dökeroğlu, Tansel; Küçükyılmaz, Tayfun; Talbi, El-Ghazali (2024). "Hyper-heuristics: A survey and taxonomy", Computers and Industrial Engineering, Vol. 187. en_US
dc.identifier.doi 10.1016/j.cie.2023.109815
dc.identifier.issn 0360-8352
dc.identifier.issn 1879-0550
dc.identifier.scopus 2-s2.0-85179034866
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.cie.2023.109815
dc.identifier.volume 187 en_US
dc.identifier.wos WOS:001132457400001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 27
dc.subject Hyper -Heuristics en_US
dc.subject Metaheuristics en_US
dc.subject Survey en_US
dc.subject Optimization en_US
dc.title Hyper-heuristics: A survey and taxonomy tr_TR
dc.title Hyper-Heuristics: a Survey and Taxonomy en_US
dc.type Article en_US
dc.wos.citedbyCount 19
dspace.entity.type Publication
relation.isAuthorOfPublication 6701315b-602f-4748-a3ef-23ff7b52ea1d
relation.isAuthorOfPublication.latestForDiscovery 6701315b-602f-4748-a3ef-23ff7b52ea1d
relation.isOrgUnitOfPublication aef16c1d-5b84-42f9-9dab-8029b2b0befd
relation.isOrgUnitOfPublication.latestForDiscovery aef16c1d-5b84-42f9-9dab-8029b2b0befd

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
2.29 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: