Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A New Estimation Technique for AR(1) Model with Long-Tailed Symmetric Innovations

No Thumbnail Available

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

In recent years, it is seen in many time series applications that innovations are non-normal. In this situation, it is known that the least squares (LS) estimators are neither efficient nor robust and maximum likelihood (ML) estimators can only be obtained numerically which might be problematic. The estimation problem is considered newly through different distributions by the use of modified maximum likelihood (MML) estimation technique which assumes the shape parameter to be known. This becomes a drawback in machine data processing where the underlying distribution cannot be determined but assumed to be a member of a broad class of distributions. Therefore, in this study, the shape parameter is assumed to be unknown and the MML technique is combined with Huber’s estimation procedure to estimate the model parameters of autoregressive (AR) models of order 1, named as adaptive modified maximum likelihood (AMML) estimation. After the derivation of the AMML estimators, their efficiency and robustness properties are discussed through simulation study and compared with both MML and LS estimators. Besides, two test statistics for significance of the model are suggested. Both criterion and efficiency robustness properties of the test statistics are discussed, and comparisons with the corresponding MML and LS test statistics are given. Finally, the estimation procedure is generalized to AR(q) models.

Description

Keywords

Adaptive Modified Maximum Likelihood, Autoregressive Models, Least Squares Estimators, Hypothesis Testing, Modified Maximum Likelihood, Estimation, Efficiency, Robustness

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Dener Akkaya, Ayşen; Türker Bayrak, Özlem. "A New Estimation Technique for AR(1) Model with Long-Tailed Symmetric Innovations",ITISE 2017: Time Series Analysis and Forecasting , pp. 39-63, 2017.

WoS Q

Scopus Q

Source

ITISE 2017: Time Series Analysis and Forecasting

Volume

Issue

Start Page

39

End Page

63
Google Scholar Logo
Google Scholar™

Sustainable Development Goals

1

NO POVERTY
NO POVERTY Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo